Copyright 2018 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Independent Agency under Contract No.
FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering
Institute, a federally funded research and development center sponsored by the United States Department
of Defense.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be
construed as an official Government position, policy, or decision, unless designated by other
documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT
NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited
distribution. Please see Copyright notice for non-US Government use and distribution.

This material is distributed by the Software Engineering Institute (SEI) only to course attendees for their
own individual study.

Except for any U.S. government purposes described herein, this material SHALL NOT be reproduced or
used in any other manner without requesting formal permission from the Software Engineering Institute
at permission@sei.cmu.edu.

Although the rights granted by contract do not require course attendance to use this material for U.S.
Government purposes, the SEI recommends attendance to ensure proper understanding.

Carnegie Mellon®, CERT® and CERT Coordination Center® are registered in the U.S. Patent and
Trademark Office by Carnegie Mellon University.

Carnegie Mellon University

Software Engineering Institute Page 1 of 45

Note to instructor: This course material does not necessarily include assignments,

exercises, or proposed projects.
These would need to be provided by the instructor or the slides would need to be

modified accordingly.

Carnegie Mellon University Page 7 of 45
Software Engineering Institute agero

~ v vinave A uva oAt

Instructor note: These are just suggestions based on our experience. Feel free to
modify as desired for your classes.

Carnegie Mellon University

Software Engineering Institute Page 9 of 45

First appearance - comes up a little later in the lecture too.

Carnegie Mellon University

Software Engineering Institute Page 18 of 45

screen

Typically constrained by more requirements, needs, and wants from the business than

resources, cost, and schedule permit. Portfolio management driven by business objectives
is @ common approach for prioritizing.

Carnegie Mellon University Pace 20 of 45
Software Engineering Institute agesuo

L R L TR LV L PR LN L)

* Consumer trust

MLV T DU UVLUT WY U YW Vi i

Where is software present? Your car? Your apartment? On airplanes? In critical
infrastructure?

Carnegie Mellon University

Software Engineering Institute Page 23 of 45

vulrerdoiiues

Need to ask “how much software does my organization purchase compared to how much it
builds in-house?” to determine if the problem is outsourced assurance or including security

in the SDLC.

Carnegie Mellon University
Software Engineering Institute

Page 24 of 45

Attackers have been learning how to exploit software for several decades; the same is not
true for software engineers.

Carnegie Mellon University

Software Engineering Institute Page 26 of 45

assurance.

Instructor note: Suggest checking the above dollar amount. It probably changes (increases)

regularly.

Carnegie Mellon University
Software Engineering Institute

Page 27 of 45

bR T I g R T I L TR Rl sl 4

Match this to the discussion of “What is software assurance?” since the definition already
appeared there.

Carnegie Mellon University

Software Engineering Institute Page 28 of 45

intrusion:
PR o YRRy | My SR ¥ DI By SRpNUIe Ny i . - alh e -
I UGG UL U G Dy SR U Y G AL o
gn WO N N R R [U PU—— N 5 T S 5.1 Tl o TSR
practices.

R

Could be an individual or a team assignment during the class.

Carnegie Mellon University

Software Engineering Institute

Page 44 of 45

Carnegie Mellon University

Software Engineering Institute Page 1 of 45

P~~~

* Defined

] L g R SR R T e

The student will be able to do the following:

* explain what a software development lifecycle (SDLC) is and give examples
* understand the difference between a SDLC and a process

* compare SDLCs to development variables and select an SDLC

* understand common lifecycles

Carnegie Mellon University Page 3 of 45
Software Engineering Institute age >0

Frrres e e = — i srr e~ i e~ g~ s

This is a chance to see how the students define this term. You may want to pass out post-it
notes and have each student define the term or you may do this as an open discussion.

Carnegie Mellon University

Software Engineering Institute Page 4 of 45

“w=ra . r ' . r 1 r o] FE R

-——— -

AV} s

Webster definition provides a general description of lifecycle where the Reifer definition
focuses on product lifecycle.

“Donald J. Reifer (Reifer Consultants Inc.) is one of the leading figures in the field of
systems/software engineering and management with over 40 years of progressive
experience. He has built businesses, steered troubled projects and served in executive
positions in industry and government. His specializes in the area of metrics and
measurement.”

Carnegie Mellon University Page S of 45
Software Engineering Institute age» o

A framework that describes the activities performed at each stage of a software

development project.

Systems engineers are often familiar with the product lifecycle so they think about a
product from the beginning when it is an idea until it is no longer used and is removed
(disposal). The software lifecycle is similar to a product lifecycle. However, a software

development lifecycle is often a subset of the software lifecycle and starts with customer
needs and ends when the software is delivered to the customer. It may only focus on the
development activities and not be concerned with where the software fits within an overall

product and may ignore maintenance, sustainment, and disposal activities.

Carnegie Mellon University
Software Engineering Institute

Page 6 of 45

VI NIVU MUV LY VTV UV,

do.

IEEE 12207
A lifecycle model is defined as a framework of processes and activities concerned with the

life of the product that may be organized into stages, which also acts as a common
reference for communication and understanding.

Just as the lifecycle model provides a starting point it will often provide an ending point
too.

Lifecycle management methodologies aid in determining the sequence of major activities,
provide a better understanding of the processes required for each activity, and serve as a
starting point from which management decisions can be made. One thing to remember is
that software development methodologies used should integrate with, and be consistent
with, the systems engineering development methodologies used for the total product.

Carnegie Mellon University Page 7 of 45
Software Engineering Institute agero

TAMIMYTOT It DU M IV T W LT PTIITIIIT I M Y M e

particular result

Have a discussion with your students about process. At a minimum, a process is a
repeatable sequence of events to produce an outcome.

Ask how a process is different than a lifecycle?

Carnegie Mellon University

Software Engineering Institute Page 8 of 45

e e s =~ 7~

models.

Point out that lifecycle models define the phases that determine the sequence of major
activities. Within the phases, processes define the series of steps that will be done within
that phase.

Carnegie Mellon University

Software Engineering Institute Page 9 of 45

R R b LR

¥ Y IMAL LM I IV W M IV LA I I TN LA T

Understanding your software process and making tradeoffs between incorporating and
deleting lifecycle components is crucially important for producing high quality software, on
time, within budget.

Carnegie Mellon University

Software Engineering Institute Page 10 of 45

Alannina fiatacfall) ~
RAD
V model
Chaos
Y o D a ~ATC Ath —~ o
VAILL 2 L .. AN

Ask to see if students recognize any of the lifecycle listed? Do they know of other lifecycles
not listed?

Where does Agile fit in?

Note that each of the lifecycles on this chart will be described in this module and Agile will
be discussed in the next module.

Carnegie Mellon University

Software Engineering Institute Page 11 of 45

—— rmr g e —aee s a—e o~

TIMYY DI MM W I MMM MY LI YT ILIL WA 1YY ML

problem?

Different processes organize activities in different ways and are described at different levels
of detail. Different organization may use different processes to produce the same types of
product. However, some processes are more suitable than the others for some types of
applications. If inappropriate processes or lifecycles are used, this will probably reduce the
quality or the usefulness of the software product being developed.

Carnegie Mellon University Pace 12 of 45
Software Engineering Institute age 120

WwHMILWVIIIGEI J VILVYY MOVCIVVGIE 9 VILWY

ANV

Customer’s and developers often define the problem from two different perspectives. The

customer is concerned about schedule, cost, features, and quality. They want to make sure
that what they asked for was done on time, within budget, and will operate without issues.
The customer defines the problem space. Whereas, developers look at the interactions

between people, processes and the tools that will be used to solve the customer’s

problems. Cost, schedule, scope, and quality provide limitations. The developer looks at the

solution space.

An SDLC can often help bridge the gap between these two perspectives. If the customer

cannot communicate the problem succinctly, SDLCs allow the developer help the customer
to define key activities that will help to understand the requirements and quality attributes
necessary for the product or system.

Carnegie Mellon University

Software Engineering Institute

Page 13 of 45

T Rl T IEREL R R s

An SDLC should be chosen based on the nature of your program, software domain, the
methods and tools used, and the controls and deliverables required.

The use of lifecycle management methodologies has proven to be extremely effective in
controlling change and in managing the complexity of the development process. However,
for any lifecycle methodology to be effective, it must be customized to specific program
goals. Therefore, your selected methodology must be adapted and evolved, the same as
the technical activities it ties together. Understanding your software process and making
tradeoffs between incorporating and deleting lifecycle components is crucially important
for producing high quality software, on time, within budget.

Carnegie Mellon University

Software Engineering Institute Page 14 of 45

* Cultures

Any criteria missing?

Carnegie Mellon University
Software Engineering Institute

Page 15 of 45

™ - /ot .. g YN T - 1 Y g YW

[[P S 2 | R R Ay O SR S N s |

Without lifecycle models, processes, standards, etc., software was developed by code and

fix .. and often times it was the user who performed the test.

Is this still done today on your project? What do you use?

Carnegie Mellon University
Software Engineering Institute

Page 16 of 45

MY ATI L YL T

One of the earliest lifecycle models was the Waterfall Model.

From the reading...

The waterfall model was first identified in 1970 as a formal alternative to the code-and-fix
software development method prevalent at the time. [ROYCE70] The waterfall model was
the first to formalize a framework for software development phases, and placed emphasis
on upfront requirements and design activities and on producing documentation during
early phases. The major drawback to this model is its inherent sequential nature — any
attempt to go back two or more phases to correct a problem or deficiency would result in
major increases in cost and schedule.

Carnegie Mellon University

Software Engineering Institute Page 17 of 45

2 Aalaiis aada Aadiaalla aad dabkiia acialaa

Waterfall Model Strengths:

e Easyto understand, easy to use

* Provides structure to inexperienced staff

* Milestones are well understood

* Sets requirements stability

* Good for management control (plan, staff, track)

* Works well when quality is more important than cost or schedule
Waterfall Model Weaknesses:

* All requirements must be known upfront

* Deliverables created for each phase are considered frozen — inhibits flexibility

* Can give a false impression of progress

* Does not reflect problem-solving nature of software development — iterations of phases

* Integration is one big bang at the end

* Little opportunity for customer to preview the system (until it may be too late)
You may want to ask when would it be good to use a Waterfall Model?
When...

* Requirements are very well known

* Product definition is stable

* Technology is understood

* New version of an existing product

* Porting an existing product to a new platform
From the reading...
In the traditional waterfall model, each stage is a prerequisite for succeeding activities, making this method a
risky choice for unprecedented systems because it inhibits flexibility. With a single pass through the process,
integration problems usually surface too late. Also, a completed product is not available until the end of the
process, discouraging user involvement. Taking these factors into account, the other Lifecycle methods are
recommended instead!

Carnegie Mellon University

Software Engineering Institute Page 18 of 45

This picture shows the phases of the classic Waterfall Model. Note that the arrows are
sequential and go from one phase into the next and there are no feedback loops. One of
the weaknesses of this model is that rework is usually needed and therefore development
may be very costly when you use this lifecycle model.

Carnegie Mellon University Pace 19 of 45
Software Engineering Institute age 170

Compare this to the Waterfall Model that we just discussed. What are the differences?

Carnegie Mellon University

Software Engineering Institute Page 20 of 45

VVIIUIL VWU UMW UUw LG

VYN v,

Prototypes are often used when the customer doesn’t have a clear idea of what he/she wants and the
requirements are general and ill-defined.

The advantages of prototyping is that it can improve the quality of requirements and specifications provided
to developers. Prototyping requires user involvement and allows them to see and interact with a prototype
allowing them to provide better and more complete feedback and specifications. The presence of the
prototype being examined by the user prevents many misunderstandings and miscommunications that occur
when each side believe the other understands what they said. Since users know the problem domain better
than anyone on the development team does, increased interaction can result in final product that has greater
tangible and intangible quality.

Some of the weaknesses include insufficient analysis by the developers. The focus on a limited prototype can
distract developers from properly analyzing the complete project. This can lead to overlooking better
solutions, preparation of incomplete specifications or the conversion of limited prototypes into poorly
engineered final projects that are hard to maintain. Further, since a prototype is limited in functionality it may
not scale well if the prototype is used as the basis of a final deliverable, which may not be noticed if
developers are too focused on building a prototype as a model. The user can confuse the prototype and
finished system. Users can begin to think that a prototype, intended to be thrown away, is actually a final
system that merely needs to be finished or polished.

As Watts Humphrey stated, since the users can only think in terms of the environment they know, the
requirements for such systems are always stated in the current environment’s terms. These requirements are
thus necessarily incomplete, inaccurate, and misleading. The challenge for the system developer is to devise a
development process that will discover, define, and develop to real requirements. This can only be done with
intimate user involvement, and often with periodic prototype or early version field tests. Such processes
always appear to take longer but invariably end up with a better system much sooner than with any other
strategy.”

Carnegie Mellon University

Software Engineering Institute Page 21 of 45

R et S R B e R TS e

the previous increment.

Construct a partial implementation of a total system then slowly add increased functionality. The
incremental model prioritizes requirements of the system and then implements them in groups. Each
subsequent release of the system adds function to the previous release until all designed functionality
has been implemented. The first increment is often a core product with many supplementary features.
Users use it and evaluate it with more modifications to better meet the needs.
Strengths:

* Develop high-risk or major functions first

* Each release delivers an operational product

* Customer can respond to each build

* Uses “divide and conquer” breakdown of tasks

* Lowers initial delivery cost

* |Initial product delivery is faster

* Customers get important functionality early

* Risk of changing requirements is reduced
Weaknesses:

* Requires good planning and design

* Requires early definition of a complete and fully functional system to allow for the definition of

increments
* Well-defined module interfaces are required (some will be developed long before others)

* Total cost of the complete system is not lower
When to use it:
* Risk, funding, schedule, program complexity, or need for early realization of benefits.
* Most of the requirements are known up-front but are expected to evolve over time
* A need to get basic functionality to the market early
* On projects which have lengthy development schedules
* On a project with new technology
* A compelling need to expand a limited set of new functions to a later system release.

Carnegie Mellon University Pace 22 of 45
Software Engineering Institute agecco

T e e v e r) mrree ot e r A E e AERIE P e e e e - ww oo ow

Mo Aidhina AdanmAa n o niAaaAA~

mererreridal.

LIV LT MLV Y M ML WY VAW I e s e

From the reading...

The incremental Lifecycle management method involves developing a software-intensive
product in a series of increments of increasing functional capability. Benefits of the
incremental method are:

* Risk is spread across several smaller increments instead of concentrating in one large
development;

* Requirements are stabilized (through user buy-in) during the production of a given
increment by deferring nonessential changes until later increments; and

* Understanding of the requirements for later increments becomes clearer based on
the user’s ability to gain a working knowledge of earlier increments.

Carnegie Mellon University

Software Engineering Institute Page 23 of 45

VAT

-— RKNA*_ _*_ _ N\

The incremental Lifecycle method allows the user to employ part of the product and is

characterized by a build-a-little, test-a-little approach to deliver an initial functional subset
of the final capability. This subset is subsequently upgraded or augmented until the total

scope of the stated user requirement is satisfied. The number, size, and phasing of

incremental builds leading to program completion are defined in consultation with the user.
An incremental methodology is most appropriate for low to medium-risk programs, when
user requirements can be fully defined, or assessment of other considerations (e.g., risks,

funding, schedule, size of program, early realization of benefits) indicate that a phased
approach is the most prudent.

Compare this to the Waterfall Model. What is different?

Carnegie Mellon University
Software Engineering Institute

Page 24 of 45

R vl o eI I L I IRV

laYa N aYal 1 1

€ A" .t

Rapid application development (RAD) uses minimal planning in favor of rapid prototyping. The
"planning" of software developed using RAD is interleaved with writing the software itself. The lack
of extensive pre-planning generally allows software to be written much faster, and makes it easier
to change requirements.

Considered an Agile method.

Stren

gths:

Reduced cycle time and improved productivity with fewer people means lower costs
Time-box approach mitigates cost and schedule risk

Customer involved throughout the complete cycle minimizes risk of not achieving customer
satisfaction and business needs

Focus moves from documentation to code (WYSIWYG)

Uses modeling concepts to capture information about business, data, and processes

Weaknesses:

Accelerated development process must give quick responses to the user

Risk of never achieving closure

Hard to use with legacy systems

Requires a system that can be modularized

Developers and customers must be committed to rapid-fire activities in an abbreviated time
frame

When to use RAD:

Reasonably well-known requirements
User involved throughout the Lifecycle
Project can be time-boxed
Functionality delivered in increments
High performance not required

Low technical risks

System can be modularized

Carnegie Mellon University

Software Engineering Institute

Page 25 of 45

R LT IS B A TR B TR

It couples the iterative nature of prototyping with the controlled and systematic aspects of
the waterfall model and is a risk-driven process model generator that is used to guide
multi-stakeholder concurrent engineering of software intensive systems. Adds risk analysis,
and 4 generation RAD prototyping to the waterfall model. Each cycle involves the same
sequence of steps as the Waterfall Model.

From the reading...

The Spiral Model developed by Barry Boehm, provides a risk reducing approach to the
software lifecycle. In the Spiral Model the radial distance is a measure of effort expended,
while the angular distance represents progress.

It combines basic waterfall building block and evolutionary/incremental prototype
approaches to software development.

The spiral model emphasizes the evaluation of alternatives and risk assessment. A review
at the end of each phase ensures commitment to the next phase, or if necessary, identifies
the need to rework a phase. The advantages of the spiral model are its emphasis on
procedures, such as risk analysis, and its adaptability to different lifecycle approaches.

Carnegie Mellon University

Software Engineering Institute Page 26 of 45

/

CI Product maintenance projects

[

In the Spiral Model the radial distance is a measure of effort expended, while the angular distance
represents progress.

The spiral model is divided into a number of framework activities (regions):

customer communication

planning (resources, timelines, etc.)
risk analysis

engineering

construction and release

customer evaluation

Each region is populated by a series of work tasks.

Strengths:

Provides early indication of insurmountable risks, without much cost
Users see the system early because of rapid prototyping tools
Critical high-risk functions are developed first

The design does not have to be perfect

Users can be closely tied to all lifecycle steps

Early and frequent feedback from users

Cumulative costs assessed frequently

Weaknesses:

Time spent for evaluating risks too large for small or low-risk projects

Time spent planning, resetting objectives, doing risk analysis and prototyping may be excessive

The model is complex
Risk assessment expertise is required
Spiral may continue indefinitely

Developers must be reassigned during non-development phase activities

May be hard to define objective, verifiable milestones that indicate readiness to proceed through

the next iteration

Carnegie Mellon University
Software Engineering Institute

Page 27 of 45

* identify risk

Each spiral

direction

When to use Spiral Model:
* When creation of a prototype is appropriate
* When costs and risk evaluation is important
* For medium to high-risk projects
* Long-term project commitment unwise because of potential changes to economic
priorities
Users are unsure of their needs
Requirements are complex
New product line
Significant changes are expected (research and exploration)

Carnegie Mellon University Pace 28 of 45
Software Engineering Institute age e o

The spiral model suggests a framework activity that addresses customer communication. In reality, the
customer and the developer enter into a process of negotiation, where the customer may be asked to
balance functionality, performance, and other product or system characteristics against cost and time
to market. The best negotiations strive for a “win-win” result. That is, the customer wins by getting the
system or product that satisfies the majority of the customer’s needs and the developer wins by
working to realistic and achievable budgets and deadlines.

Boehm’s WINWIN spiral model defines a set of negotiation activities at the beginning of each pass
around the spiral. Rather than a single customer communication activity, the following activities are
defined:

1. Identification of the system or subsystem’s key “stakeholders.”

2. Determination of the stakeholders’ “win conditions.”

3. Negotiation of the stakeholders’ win conditions to reconcile them into a set of win-win conditions for
all concerned (including the software project team).

Successful completion of these initial steps achieves a win-win result, which becomes the key criterion
for proceeding to software and system definition.

In addition to the emphasis placed on early negotiation, the WINWIN spiral model introduces three
process milestones, called anchor points, that help establish the completion of one cycle around the
spiral and provide decision milestones before the software project proceeds.

In essence, the anchor points represent three different views of progress as the project traverses the
spiral. The first anchor point, lifecycle objectives (LCO), defines a set of objectives for each major
software engineering activity. For example, as part of LCO, a set of objectives establishes the definition
of top-level system/product requirements. The second anchor point, lifecycle architecture (LCA),
establishes objectives that must be met as the system and software architecture is defined. For
example, as part of LCA, the software project team must demonstrate that it has evaluated the
applicability of off-the-shelf and reusable software components and considered their impact on
architectural decisions. Initial operational capability (I0C) is the third anchor point and represents a set
of objectives associated with the preparation of the software for installation/distribution, site
preparation prior to installation, and assistance required by all parties that will use or support the
software

Carnegie Mellon University

Software Engineering Institute Page 29 of 45

A variant of the Waterfall that emphasizes the verification and validation of the product.
Testing of the product is planned in parallel with a corresponding phase of development

The V model is a simple variant of the traditional Waterfall Model of system or software
development. The V model builds on the waterfall model by emphasizing verification and
validation. The V model takes the bottom half of the waterfall model and bends it upward
into the form of a V, so that the activities on the right verify or validate the work products
of the activity on the left. More specifically, the left side of the V represents the analysis
activities that decompose the users’ needs into small, manageable pieces, while the right
side of the V shows the corresponding synthesis activities that aggregate (and test) these
pieces into a system that meets the users’ needs.

Donald Firesmith, SEI Blog, November 11, 2013

Carnegie Mellon University Pace 30 of 45
Software Engineering Institute age >t o

Like the waterfall model, the V model has both advantages and disadvantages. On the positive side, it
clearly represents the primary engineering activities in a logical flow that is easily understandable and
balances development activities with their corresponding testing activities. On the other hand, the V
model is a gross oversimplification in which these activities are illustrated as sequential phases rather
than activities that typically occur incrementally, iteratively, and concurrently, especially on projects
using evolutionary (agile) development approaches. Donald Firesmith, SEl Blog, November 11, 2013

Strengths:
* Emphasize planning for verification and validation of the product in early stages of product
development
* Each deliverable must be testable
* Project management can track progress by milestones
e Easytouse

Weaknesses:

* Does not easily handle concurrent events

* Does not handle iterations or phases

* Does not easily handle dynamic changes in requirements
* Does not contain risk analysis activities

When to use the V Model
* For systems requiring high reliability — hospital patient control applications
* When all requirements are known up-front
* When it can be modified to handle changing requirements beyond analysis phase
* When solution and technology are known

Carnegie Mellon University

Software Engineering Institute Page 31 of 45

L.B.S. Raccoon, noted that project management models such as the spiral model and
waterfall model, while good at managing schedules and staff, didn't provide methods to fix
bugs or solve other technical problems. At the same time, programming methodologies,
while effective at fixing bugs and solving technical problems, do not help in managing
deadlines or responding to customer requests. The structure attempts to bridge this gap.
Chaos theory was used as a tool to help understand these issues.

Wikipedia

Carnegie Mellon University Pace 35 of 45
Software Engineering Institute age 320

i~ i R

[) TSN N N SR S S SN S A N [S [S

The chaos model notes that the phases of the lifecycle apply to all levels of projects, from the whole
project to individual lines of code.

* The whole project must be defined, implemented, and integrated.

* Systems must be defined, implemented, and integrated.

* Modules must be defined, implemented, and integrated.

* Functions must be defined, implemented, and integrated.

* Lines of code are defined, implemented and integrated.
One important change in perspective is whether projects can be thought of as whole units, or must
be thought of in pieces. Nobody writes tens of thousands of lines of code in one sitting. They write
small pieces, one line at a time, verifying that the small pieces work. Then they build up from there.
The behavior of a complex system emerges from the combined behavior of the smaller building
blocks.
The chaos strategy is a strategy of software development based on the chaos model. The main rule
is always resolve the most important issue first. An issue is an incomplete programming task. The
most important issue is a combination of big, urgent, and robust.

* Big issues provide value to users as working functionality.

* Urgent issues are timely in that they would otherwise hold up other work.

* Robust issues are trusted and tested. Developers can then safely focus their attention

elsewhere.

To resolve means to bring it to a point of stability. The chaos strategy resembles the way that
programmers work toward the end of a project, when they have a list of bugs to fix and features to
create. Usually someone prioritizes the remaining tasks, and the programmers fix them one at a
time. The chaos strategy states that this is the only valid way to do the work.

Wikipedia

Carnegie Mellon University

Software Engineering Institute Page 37 of 45

COTS
Cycle

[L A ¥ U

T \JOT \II u IUy UI\IOL/

The SEI defines COTS product as one that is:
* sold, leased, or licensed to the general public
» offered by a vendor trying to profit from it
* supported and evolved by the vendor, who retains the intellectual property rights
* available in multiple, identical copies
* used without modification of the internals

Carnegie Mellon University Pace 38 of 45
Software Engineering Institute age 3e o0

PECA

CURE

An evaluation process defined by the SEI and National Research Council Canada (NRC),
called PECA (Plan, Establish, Collect, Analyze), helps organizations make carefully reasoned
and sound product decisions. The process can be tailored by each organization to fit its
particular needs, and is flexible enough to be used within many organizations and with
many COTS-based development processes.

Although the PECA process was derived in part from ISO 14598, the process was freely
adapted to fit the needs of COTS software product evaluation. The process begins with
initial planning for an evaluation of a COTS product (or products) and concludes with a
recommendation to the decision maker. The decision itself is not considered part of the
evaluation process—the aim of the process is to provide all of the information necessary
for a decision to be made.

The COTS Usage Risk Evaluation (CURE) has been developed to assist organizations in
avoiding common mistakes in COTS-based acquisitions. CURE is ideally given during the
early stages of a program, when the major key decisions relating to use of COTS products
have not yet been made. CURE is a useful technology for any organization that is preparing
for a project that is critically dependent on commercial software; it provides insight and
understanding into the potential risks associated with such a program.

Carnegie Mellon University

Software Engineering Institute Page 39 of 45

TR L i i L I

Examples

+ OBUS

The concurrent development model, called concurrent engineering, provides an accurate
state of the current state of a project.

Focus on concurrent engineering activities in a software engineering process such as
prototyping, analysis modeling, requirements specification and design. Represented
schematically as a series of major technical activities, tasks, and their associated states.
Defined as a series of events that trigger transitions from state to state for each of the
software engineering activities.

Two ways to achieve the concurrency:
* system and component activities occur simultaneously and can be modeling using the
state-oriented approach
* atypical client/server application is implemented with many components, each can

be designed and realized concurrently.

Applies to all types of software development.

Carnegie Mellon University

Software Engineering Institute Page 40 of 45

None

The concurrent development model, sometimes called concurrent engineering, has been described in the following
manner by Davis and Sitaram :

Project managers who track project status in terms of the major phases [of the classic lifecycle] have no idea of the status
of their projects. These are examples of trying to track extremely complex sets of activities using overly simple models.
Note that although . . . [a large] project is in the coding phase, there are personnel on the project involved in activities
typically associated with many phases of development simultaneously. For example, . . personnel are writing
requirements, designing, coding, testing, and integration testing [all at the same time]. Software engineering process
models by Humphrey and Kellner (SEI) have shown the concurrency that exists for activities occurring during any one
phase. Kellner's work uses statecharts [a notation that represents the states of a process] to represent the concurrent
relationship existent among activities associated with a specific event (e.g., a requirements change during late
development), but fails to capture the richness of concurrency that exists across all software development and
management activities in the project. . . . Most software development process models are driven by time; the later it is,
the later in the development process you are. [A concurrent process model] is driven by user needs, management
decisions, and review results.

The concurrent process model can be represented schematically as a series of major technical activities, tasks, and their
associated states. For example, the engineering activity defined for the spiral model is accomplished by invoking the
following tasks: prototyping and/or analysis modeling, requirements specification, and design.

The activity—analysis—may be in any one of the states noted at any given time. Similarly, other activities (e.g., design or
customer communication) can be represented in an analogous manner. All activities exist concurrently but reside in
different states. For example, early in a project the customer communication activity (not shown in the figure) has
completed its first iteration and exists in the awaiting changes state. The analysis activity (which existed in the none state
while initial customer communication was completed) now makes a transition into the under development state. If,
however, the customer indicates that changes in requirements must be made, the analysis activity moves from the under
development state into the awaiting changes state.

The concurrent process model defines a series of events that will trigger transitions from state to state for each of the
software engineering activities. For example, during early stages of design, an inconsistency in the analysis model is
uncovered. This generates the event analysis model correction which will trigger the analysis activity from the done state
into the awaiting changes state.

The concurrent process model is often used as the paradigm for the development of client/server applications. A
client/server system is composed of a set of functional components. When applied to client/server, the concurrent
process model defines activities in two dimensions : a system dimension and a component dimension. System level issues
are addressed using three activities: design, assembly, and use. The component dimension is addressed with two
activities: design and realization.

Concurrency is achieved in two ways:

(1) system and component activities occur simultaneously and can be modeled using the state-oriented approach
described previously;

(2) a typical client/server application is implemented with many components, each of which can be designed and realized
concurrently.

In reality, the concurrent process model is applicable to all types of software development and provides an accurate
picture of the current state of a project. Rather than confining software engineering activities to a sequence of events, it
defines a network of activities. Each activity on the network exists simultaneously with other activities. Events generated
within a given activity or at some other place in the activity network trigger transitions among the states of an activity.

Carnegie Mellon University

Software Engineering Institute Page 41 of 45

Does it matter?

FEYLIMAL MYyt Mw MWL T I IV W T L LA LAY LAY 1T Wi .

Are these SDLCs different? Use the questions on the slide to discuss with students.

Carnegie Mellon University

Software Engineering Institute Page 42 of 45

Py~~~

—_— . ——e— — - -

mvmiant [4 Annm kAN

of itselt.

Any one model does not fit all projects. If there is nothing that fits a particular project, pick
a model that comes close and modify it for your needs. Project should consider risk but if
complete spiral is too much — start with spiral and modify it. Project delivered in
increments but there are serious reliability issues — combine incremental model with the V-
shaped model. Each team must pick or customize a SDLC model to fit the project.

Carnegie Mellon University Pace 44 of 45
Software Engineering Institute age4*0

Carnegie Mellon University

Software Engineering Institute Page 1 of 24

P~~~

PSP/TSP

T I I A Y e e e e\ e
« XP and Scrum

Cierr e g e e e e oo -

List the learning objectives for this particular session.

The student will learn
* the difference between process, method, and framework
* the concepts of PSP/TSP/SCDM
* the fundamentals of Agile methods

Carnegie Mellon University

Software Engineering Institute Page 3 of 24

d A LLELLEF. BEEEE A 4 4 Sudadd R R W Ew ww

process.

Process was defined in the previous lecture.

Carnegie Mellon University

Software Engineering Institute Page 5 of 24

FEYLIMAL JuM 1IN L M Y w Y gLy M 11t YELALIL L v

P v e v

e N iint that vians AlAd F Vai: AdaaidA

When you define processes try to keep them simple. They should contain enough
information that you understand the main activities but at the same time processes should
be usable by multiple projects in multiple environments with tailoring as appropriate.

Carnegie Mellon University

Software Engineering Institute Page 6 of 24

Most process frameworks will require some adaptation (tailoring) to your environment. It

is advisable to first run through the process to understand what needs to be tailored.
Process tailoring should be based on criteria and not be a pick and choose approach.

Carnegie Mellon University
Software Engineering Institute

Page 7 of 24

2 Tallav tmnmammt i~

- W Lttt Lt

tallav mnmamAmt i~

aetbleh i mea

If you are using a framework, understand the strengths and weaknesses. Use the

framework “as is” before you try to tailor it. When you tailor your processes, measure the

results and see if that is what is expected Make sure you don’t tailor too much or your

measures will not provide much insight. What you really will have is a different process.

Carnegie Mellon University
Software Engineering Institute

Page 8 of 24

Question:

R ety LA

Ken Orr is a software engineer, executive and consultant, known for his contributions in the
field of software engineering to structured analysis and with the Warnier/Orr diagram.

He wrote the article "CMM versus agile development: Religious Wars and Software
Development." Agile Project Management Executive Report 3.7 (2002). The article starts
out with the following quote.
“Today, a new debate rages: agile software development versus rigorous software
development.”
-- Jim Highsmith, Fellow, Cutter Business Technology Council
An excerpt from the article...

“Every decade or so, there seems to be yet another software development methodology struggle.
During the 1970s, the battle was between various forms of structured and traditional development; in
the 1980s, the struggle was between various forms of data modeling and traditional development;
during the 1990s, it was between warring factions of object-oriented (OO) design and traditional
development. Like most religious wars, the most intense conflict of methodology wars has been
between either closely related methods or between those that are furthest apart. Today, in the first
decade of the 21st century, the current software development war is between those supporting agile
methods and those supporting CMM -- a representative of the traditional "waterfall" software
development approaches.”

Carnegie Mellon University

Software Engineering Institute Page 9 of 24

P A rrm srs s smrsr i = s e e e~ e~ g~

UV UL UIHTU U LUTUVLD LTUL TTHTUDL MY P VYUY Ya.

This slide is from the previous lecture. Point out that life-cycle models define the phases
that determine the sequence of major activities. Within the phases, processes define the
series of steps that will be done within that phase.

Carnegie Mellon University

Software Engineering Institute Page 10 of 24

NI MRS L THIMAne WrnAn g T vy

+ Scripts
* Forms
» Standards

The concept of processes is at the heart of software and systems engineering. Software process models
integrate software engineering methods and techniques and are the basis for managing projects. High product
quality routinely results from high process quality. The quality of products is dependent on the QUALITY of the
PROCESSES used to produce them. Focus on process helps people work “smarter” rather than “harder”, to use
technology effectively and to achieve better outcomes

The benefits of defined processes include:
* Improves communication and understanding of current practices
* Enables capture of “corporate know-how” and best practices
* Establishes a baseline for analysis and improvement of the process
* Identifies where and how to measure the process
* Facilitates common training and understanding; facilitates teamwork, where appropriate

One of the core aspects of defining a process is using historical data to analyze and improve process
performance. Therefore, data collection is supported by four main elements:
* Scripts — document the process entry criteria, phases/steps, and exit criteria. The purpose is to guide you
through the process.
* Measures — measure the process and the product. They provide insight into how the process is working
and the status of the work.
* Standards — provide consistent definitions that guide the work and for gathering the data.
* Forms — provide a convenient and consistent framework for gathering and retaining data.

By managing your process you are able to then improve it.
There are many ways to describe process components. One way is ETVX.

ETVX describes activities as a set of tasks to be performed. It uses a simple technique of describing four phases
Entry Criteria, Tasks to be performed, Exit Criteria and Validation, Verification Conditions for each task. The
purpose of using a process definition method such as ETVX is to develop an operational definition of the activity
under a process architecture. These operational definitions can then be adapted or tailored for use on all
projects which uses the defined process architecture.

Carnegie Mellon University Page 11 of 24
Software Engineering Institute age 1o

VVYIIGAL IV WA IVINV UL IV A G

The method is the way or approach that you are going to use to build the system. It will be
used to structure, plan and control your activities.

Carnegie Mellon University

Software Engineering Institute Page 12 of 24

e mrim tte e m s M) s sy e ey s s e v =

Too little process?
* Everyone can do what they want.

Too much process?

* There are so many rules and guidelines that the developer feels constrained by what
they do and do feel that they have the flexibility to think and do a good job.

How would you know?
* ASK
* Observe
* Metrics
* Quality of the results

Carnegie Mellon University Page 14 of 24
Software Engineering Institute age 1%0

R R A R

Processes are not a silver bullet. They are frameworks that allow an organization to
provide guidance for key activities. It is best to have buy-in and involve the people that will
be using the process.

Watt’s Humphrey had a quote, “If you don’t know where you are, a map won’t help.” If you
assume you know the current practice without doing some type of evaluation to baseline
the current practice, you may find yourself “lost in the woods” in your organization and
changing things that are working and not having an accurate picture of what needs to be

fixed.

Carnegie Mellon University Pace 16 of 24
Software Engineering Institute age 160

~ ~ - ~

D B B L D L R T PR e A T T RS- DY R S 3

T UIIUVYIIIY UV TULLUT U LY TUVY T IDLUUU U U THILUT L W U vy

Process improvement occurs within the context of the organization.
* strategic plan
* business objectives
* organizational structure
* technologies in use
* culture
* management

To have a successful effort, you should tie it back to what is going on in other parts of your
organization.

Carnegie Mellon University

Software Engineering Institute Page 17 of 24

- A mvema mma B R I L S L - A 2 1 S e £ e DU | B PO

Everyone realizes the importance of having a motivated, quality work fore but even our
finest people can’t perform at their best when the process is not understood or operating
at its best.

Carnegie Mellon University

Software Engineering Institute Page 18 of 24

Heroes are made by people’s actions. Many Ad Hoc “Hobbysts” can come in and save the
day, but can this be sustained overtime? Can that hero be available to work on all projects?

Carnegie Mellon University

Software Engineering Institute Page 19 of 24

The Royal Enfield Bullet, in its present form, was first introduced in Britain in 1949 as a
350cc bike. It incorporated an innovative design element: swing arm suspension. This
feature along with its extremely strong single cylinder engine allowed it to excel as a trials
bike. The 500cc model was introduced in Britain during the 1950’s, winning hundreds of
races. This brought the Bullet international recognition and orders came into the factory in
Redditch, England from all over the world.

Dr. Deming used the Red Bead Experiment to clearly and dramatically illustrate several
points about poor management practices. This includes the fallacy of rating people and
ranking them in order of performance for next year, based on previous performance. The
Red Bead Experiment uses statistical theory to show that even though a “willing worker”
wants to do a good job, their success is directly tied to and limited by the nature of the
system they are working within. Real and sustainable improvement on the part of the
willing worker is achieved only when management is able to improve the system.
http://maaw.info/DemingsRedbeads.htm

Carnegie Mellon University

Software Engineering Institute Page 20 of 24

Carnegie Mellon University

Software Engineering Institute Page 1 of 30

~ vesign reviews
| PSP1.1 |
™~ N -

["psPo | ‘ PSP0.1 ‘

PTiveveoo ‘

Defect recording

| L e e Y eI

L |

The PSP aims to provide software engineers with disciplined methods for improving personal software
development processes. The PSP helps software engineers to:

* Improve their estimating and planning skills.

* Make commitments they can keep.

* Manage the quality of their projects.

* Reduce the number of defects in their work.

The goal of the PSP is to help developers produce zero-defect, quality products on schedule.

PSP training follows an evolutionary improvement approach: an engineer learning to integrate the PSP into his or
her process begins at the first level, PSPO, and progresses in process maturity to the final level — PSP3. Each Level
has detailed scripts, checklists and templates to guide the engineer through required steps and helps the
engineer improve his own personal software process. Humphrey encourages proficient engineers to customize
these scripts and templates as they gain an understanding of their own strengths and weaknesses.

The input to PSP is the requirements; requirements document is completed and delivered to the engineer.

PSPO, PSPO0.1 (Introduces process discipline and measurement)PSP0 has 3 phases: planning, development
(design, coding, test) and a post mortem. A baseline is established of current process measuring: time spent on
programming, faults injected/removed, size of a program. In a post mortem, the engineer ensures all data for the
projects has been properly recorded and analyzed. PSP0.1 advances the process by adding a coding standard, a
size measurement and the development of a personal process improvement plan (PIP). In the PIP, the engineer
records ideas for improving his own process.

PSP1, PSP1.1 (Introduces estimating and planning)Based upon the baseline data collected in PSPO and PSP0.1,
the engineer estimates how large a new program will be and prepares a test report (PSP1). Accumulated data
from previous projects is used to estimate the total time. Each new project will record the actual time spent. This
information is used for task and schedule planning and estimation (PSP1.1).

PSP2, PSP2.1 (Introduces quality management and design)PSP2 adds two new phases: design review and code
review. Defect prevention and removal are the focus at the PSP2. Engineers learn to evaluate and improve their
process by measuring how long tasks take and the number of defects they inject and remove in each phase of
development. Engineers construct and use checklists for design and code reviews. PSP2.1 introduces design
specification and analysis techniques.

PSP3 is a legacy level that has been superseded by TSP.

Carnegie Mellon University

Software Engineering Institute Page 4 of 30

IR L R ™ T ~—— e~y -

These graduated exercises not only allow students to learn the PSP methods but help them
to discover their own personal habits.

Carnegie Mellon University

Software Engineering Institute Page 6 of 30

High-quality software is the goal of the PSP, and quality is measured in terms of defects. For the
PSP, a quality process should produce low-defect software that meets the user needs. The PSP
phase structure enables PSP developers to catch defects early. By catching defects early, the
PSP can reduce the amount of time spent in later phases, such as Test.
The PSP theory is that it is more economical and effective to remove defects as close as
possible to where and when they were injected, so software engineers are encouraged to
conduct personal reviews for each phase of development. Therefore the PSP phase structure
includes two review phases:

* Design Review

* Code Review
The key data collected in PSP are time, defect, and size data — the time spent in each phase;
when and where defects were injected, found, and fixed; and the size of the product parts.
Software developers use many other measures that are derived from these three basic
measures to understand and improve their performance. The PSP is intended to help a
developer improve their personal process; therefore PSP developers are expected to continue
adapting the process to ensure it meets their personal needs

Logging time, defect, and size data is an essential part of planning and tracking PSP projects, as
historical data is used to improve estimating accuracy. The PSP uses the PROxy-Based
Estimation (PROBE) method to improve a developer’s estimating skills for more accurate
project planning. For project tracking, the PSP uses the Earned Value method.

The PSP also uses statistical techniques, such as correlation, linear regression, and standard
deviation, to translate data into useful information for improving estimating, planning and
quality. These statistical formulas are calculated by the PSP tool.

Carnegie Mellon University

Software Engineering Institute Page 7 of 30

LedIinwoik

In combination with the Personal Software Process (PSP), the Team Software Process (TSP)
provides a defined operational process framework that is designed to help teams of
managers and engineers organize projects and produce software products that range in size
of sizes beyond from small projects of several thousand lines of code (KLOC) to very large
projects greater than half a million lines of code. The TSP is intended to improve the levels
of quality and productivity of a team's software development project, in order to help them
better meet the cost and schedule commitments of developing a software system.

The initial version of the TSP was developed and piloted by Watts Humphrey in the late
1990s and the Technical Report for TSP sponsored by the U.S. Department of Defense was
published in November 2000. The book by Watts Humphrey, Introduction to the Team
Software Process, presents a view the TSP intended for use in academic settings, that
focuses on the process of building a software production team, establishing team goals,
distributing team roles, and other teamwork-related activities.

Carnegie Mellon University

Software Engineering Institute Page 12 of 30

N N I T - - N I - I
CtratAarn:

LA R e TR]

e e — i e T e et e e s m e e e T e it it e — = -

TSP starts with a project launch. The process of forming and building a team does not
happen by accident, and it takes time. Teams need to establish their working relationships,
determine member roles, and agree on goals. An hour or so spent on team-building issues
at the beginning of the project saves time later.

Some of the key activities include:
* Management presents expectations.
* Team estimates effort and determines whether it can meet management's
expectations.
* Team makes quality plan to ensure a good product.
* Team and management negotiate if necessary.
* Team and management agree on plan, and work begins.

Step 1: Develop Strategy

In the launch step, your team agreed on what a successful project would look like and
established measureable role and team goals. In this step, you devise a strategy for doing
the work, create a conceptual product design, and make a preliminary estimate of the
product’s size and development time. If the estimate indicates that the work will take
longer than the time you have available, you revise the strategy until the work fits the time
available. Finally, you document the strategy. This step is done before you do project
planning.

Carnegie Mellon University

Software Engineering Institute Page 15 of 30

e rit i

M LnanIMAMAI M S VI g I YINYY wnAvI vy v

* size estimate

PN A] U PPN PN

HECVY PIQUVAGY DAY $ v P

Step 2 creates the plans you will need to manage your project. The complexity of a
development plan is governed by the complexity of thee work that you plan to do. A
completed TSP plan has several forms that contain size and time estimates, the schedule,
and a quality plan. You will use Earned Value and learn how to make defect-injection and
yield estimates to see whether the plan meets your team’s quality objectives.

Carnegie Mellon University Page 16 of 30
Software Engineering Institute age 160

~~p ~-

ML LA I v e vy

o

P~ vy

R

A

e~

In this step, the software requirements specification is produced. This specification

describes the functions you intend the product to perform. It will also provide clear and

unambiguous criteria for evaluating the finished product.

Carnegie Mellon University
Software Engineering Institute

Page 17 of 30

—c— e e —rgrt o =~

prouuct

This step is to ensure that engineers produce thorough, high-quality designs. When
designing with teams, you first produce the overall design structure and then divide this
overall product into principal components. The team members then separately design
these components and provide their designs to the development manager, who combines

them in the system design specification. It is also important to produce and inspect the
integration test plan.

Carnegie Mellon University Page 18 of 30
Software Engineering Institute age 160

T IS IL U I L M LI AT L g A

P N ey) (PP P - N

The principal activities in the implementation process are implementation planning,
detailed design, detailed-design inspection, coding, code inspection, unit testing,
component quality review, and component release. Implementation standards are also
developed to add to and extend the standards defined in the design phase.

Carnegie Mellon University Page 19 of 30
Software Engineering Institute age 170

i d i~ |

L iy utaniny vy

Noiala lavial aas

PR R N P - |

m~tsmbmcmn bandt

This step covers both testing and documentation. The purpose of testing is to asses the
product, not to fix it. With TSP you have the data to judge which parts of the system are

most likely to be defect-prone. Typically, those modules with the most defects in test are
likely to have the most defects remaining after test.

Carnegie Mellon University Page 20 of 30
Software Engineering Institute agesuo

e i

MM IMMVL WIS WY AT A LI

THIDUIL G I TID TV VUV U U VIS G U T WY U Tu v

This is the final step in the PSP process. In this step, you review the team’s work to ensure
that you have completed all the needed tasks and recorded all the required data. You also

reexamine what you did in this cycle, both to learn what went right and wrong and to see
how to do the job better the next time.

Carnegie Mellon University Page 21 of 30
Software Engineering Institute ageslo

L T 1 s I R B L D s P I R I <L S N

The scripts and example forms are described in the TSP book.

Carnegie Mellon University

Software Engineering Institute Page 23 of 30

~

* Team Leader

Each role represents a single facet of the overall team’s activities.

Carnegie Mellon University Page 26 of 30
Software Engineering Institute age b0

—— s r e o~ s s s s e e e~

AOMATINMA VAT I TEIMAIIILLAII T VAT WIS T LI Y W wvar
I e A L e e D L A I A L
MUL UD G WUV LYY IV Y TUAVTTILUALUT T W B

The team leader’s goals and measures are discussed in the TSP book.

Carnegie Mellon University

Software Engineering Institute Page 27 of 30

Microsoft

Xerox

There are many companies that use TSP as you can see below.

Adobe Systems Incorporated, Advanced Information Services Inc., Altran Praxis Ltd, CAE
USA Inc., CGI Group, Inc., Composite Engineering Inc., Davis Systems, DEK International
GmbH, Delaware Software, European Software Institute — Center, Eastern Europe Expert
Software Consultants Ltd. Faculdade de Engenharia da Universidade do Porto Fuji Xerox
Co., Ltd. FUJIFILM Corporation FUJIFILM Software Co., Ltd. Hitachi Solutions, Ltd. HP
Enterprises Services, LLC Instituto Tecnologico y de Estudios Superiores de Monterrey (TEC)
It Era S.A. de C.V. Johannesburg Centre for Software Engineering Kernel Corporativo S.A. de
C.V. Kyushu Institute of Technology Kyushu University Mitsubishi Space Software Co., Ltd.
Neoris de Mexico S.A. de C.V. Next Process Institute Ltd. Oracle Corporation PersonalSoft
S.A.S. Procesix Colombia Ltda. Process & Project Health Services PS&J Consulting Services
Inc. QuarkSoft, S.C. SEONTI S.A. de C.V. Siemens AG SILAC Ingenieria de Software S.A. de
C.V. SKIZCorp Technology Softtek Integration Systems, Inc. Software Engineering
Competence Center (SECC) Software Industry Excellence Center de Mexico SC Software
Park Thailand - NSTDA Software Technology Process & People, Inc. Strongstep-Innovation in
Software Quality Team Management Consulting Organization, Inc. Technology and Software
Provider S.A. de C.V. Tektronix Communications The Wall Group Toshiba Corporation Towa
Software S.A. de C.V. U.S. Air Force CRSIP STSC U.S. Naval Air Systems Command (NAVAIR)
U.S. Naval

Carnegie Mellon University Page 28 of 30
Software Engineering Institute age e o

Carnegie Mellon University

Software Engineering Institute Page 1 of 38

S AN RS IV LMD UV LU T LI M VI I L L

The architecture centric design method is a method for software architectural design
developed in 2005 by Anthony J. Lattanze of the SEI at Carnegie Mellon University. It places
the software architecture at the center of a development effort rather than software
processes. ACDM weaves together product, technology, process, and people into a
cohesive lightweight, scalable development method.

The key goals of ACDM are to help software development teams:

* Get the information from stakeholders needed to define the architecture as early as
possible.

* Create, refine, and update the architecture in an iterative way throughout the lifecycle
whether the lifecycle is waterfall or iterative.

* Validate that the architecture will meet the expectations once implemented.

* Define meaningful roles for team members to guide their efforts.

* Create better estimates and schedules based on the architectural blueprint.

* Provide insight into project performance.

* Establish a lightweight, scalable, tailorable, repeatable process framework.

“The Architecture Centric Development Method,” Anthony J. Lattanze, February 2005,
CMU-ISRI-05-103, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA

Carnegie Mellon University Page 3 of 38
Software Engineering Institute age >0

f— e =g~

I—I::‘ - Frm s ey |

|| '

[TIUBT A MISSVNLL winiieiii v

T

| CLUBY & MLIIe MIvjeLt veu e | I

| CLUBL v LI ULL VLIV I W L RS | I

|J\.u5\.-f TUVILYY WiLIiLeLLu e

ACDM Stages

Stage 1: Discover Architectural Drivers - Meet with client stakeholders to discover and document
architectural drivers: high-level functional requirements, constraints and quality attributes.

Stage 2: Establish Project Scope - Distill architectural drivers into an architectural drivers specification.
Create a Statement of Work and Preliminary Project Plan.

Stage 3: Create Notional Architecture - Create the initial architecture which includes a run-time view, code
view, and physical view of the system.

Stage 4: Architectural Review - Review the notional architecture to discover and document risks and issues.
Stage 5: Production Go/No-Go - Prioritize and list the risks and issues discovered during the architecture
review and decide whether the architecture is ready for production (production step 6) or whether it needs to
be refined (refine step 6).

Refine

Stage 6: Experiment Planning - Team creates experiments to mitigate risks and/or issues that were
discovered during the review. Experiments are targeted, planned, technical prototypes that are for the
purpose of exploring technical issues associated with the architecture or to further explore the architectural
drivers.

Stage 7: Experiment Execution and Architecture Refinement - The team carries out the experiments and
documents the results. The architecture is refined based on the results of the experiments.

Return to Stage 4, Architectural Review to review the refined architecture.

Production

Stage 6: Production Planning - Team creates a detailed plan for the construction of the system based on the
refined architecture. Each element of the architecture has an “owner” and shepherds the construction of the
element to completion. The plan schedules time and resources for detailed element design, reviews,
construction, test, and so forth.

Stage 7: Production - The team executes the production plan and is actively engaged in building the system.
Production includes construction of the elements of the architecture, integration of the system, as well as
element and system test. Production may result in producing the whole system, parts of the system, or in
deliverable increments of the system.

Carnegie Mellon University

Software Engineering Institute Page 4 of 38

I—I::‘-‘—o-- Frm s ey |

|| '

CAUBT 4 MITNT YL MRS e LM M MY e

T

Stage 1-5 focuses on
* how long it will take to discover the architectural drivers
* create the notional architecture
* how many experiments
* refining the architecture for production

Stage 6-7 focus on
* mapping architectural elements to tasks, schedules, and personnel
* how long it will take to design, construct, and test each element
* how long it will take to integrate the elements of the architecture into a system

Stage 5 is roughly on the mid-point. Those activities prior to stage 5 are discovery oriented where
developers gather information to build, refine, and baseline the architecture. Since not much is
known about the product, project, or client stakeholders; this period of time is characterized as the
Period of Uncertainty. ACDM activities prior to stage 5 are designed to overcome the Period of
Uncertainty as quickly as possible. Those activities occurring after stage 5 are detailed design and
construction oriented. The architecture is base-lined and should embody the needs and desires of
the stakeholders; this period of time is characterized as the Period of Certainty. The focus of the
Preliminary Project Plans is determining how long the team will spend creating and refining the
architecture NOT on building the final product. Philosophically speaking, ACDM works best when
the team defines the notional architecture, reviews it, and baselines the architecture as quickly as
possible. The benefit of this approach is that the Period of Uncertainty is shortened, and the Period
of Certainty is reached earlier. Once the Period of Certainty is reached, more accurate estimates for
production can be made.

Carnegie Mellon University

Software Engineering Institute

Page 5 of 38

B R Ll S g

i e R R L R R R I R R e A AL]

il e A A S e R e L

Functionality is a measure of how well a system does the work it was intended to do, but
functionality is not all that matters in software development. Properties like
interoperability, modifiability, and portability also matter as much as functionality does.
These properties are determined primarily by the software structure — or the software
architecture.

While many structures can satisfy functionality, few can satisfy the required functionally
and the quality attribute properties needed in a system. Achieving quality attributes in a
predicable way can only be accomplished by deliberately selecting the appropriate
structures early in the development process. This is a radical departure from high speed,
lightweight programming methodologies (e.g. XP) that focuses on functionality and
prescribes writing software until a product emerges — architectures also emerge in this
paradigm.

Emergent architectural structures may or may not meet the expectations of the broader
stakeholders. Other methods espouse high ceremony processes and heavy emphasis on
document production. The Architecture Centric Development Method (ACDM) can be
differentiated from these extremes in that ACDM places the software architecture at the
center of a development effort rather than software processes. Like architectures in the
building and construction industries, ACDM prescribes using the architecture design to
drive not only the technical aspects of the project, but also the programmatic issues of a
development effort as well. ACDM weaves together product, technology, process, and
people into a cohesive lightweight, scalable development method.

Carnegie Mellon University

Software Engineering Institute Page 8 of 38

noemn T 0 AARN

Summarize the main points of the talk.

Carnegie Mellon University Page 9 of 38
Software Engineering Institute age o

MIMLLIL S U VI M T (MY MMM L WU LT AL Y M Y I I L

TTRTTTJ T TrTTTTTO T T TTrR T TRT et TTQRTITTT T T TR OCTTO

requirements”

Alistair Cockburn was one of the developers of the Agile Development Manifesto.

Carnegie Mellon University

Software Engineering Institute Page 12 of 38

e I v vy,

Rapid development and delivery is now often the most important requirement for software
systems
* Businesses operate in a fast —changing requirement and it is practically impossible to
produce a set of stable software requirements
» Software has to evolve quickly to reflect changing business needs.

Rapid software development
* Specification, design and implementation are inter-leaved
* System is developed as a series of versions with stakeholders involved in version

evaluation

And .. Chaos Report published in 2012.
* 49% of businesses say most of their company is using Agile development
* 52 % of customers are happy or very happy with Agile projects
* The number of those who plan to implement agile development in future projects has
increased from 59% in 2011 83% in 2012.
* The most popular Agile method used is Scrum (52%)

Carnegie Mellon University Page 15 of 38
Software Engineering Institute age 10

VUAIUL LU LIV VuowUT v

~a

Statements taken from the Manifesto for Agile Software Development

“That is, while there is value in the items on
the right, we value the items on the left more.”

Carnegie Mellon University
Software Engineering Institute

Page 17 of 38

WIHIVIL Il IAuviiio

B e e

Statements taken from the Manifesto for Agile Software Development

“That is, while there is value in the items on
the right, we value the items on the left more.”

Carnegie Mellon University

Software Engineering Institute Page 18 of 38

- wulivuuie OIIHO

| TN SO [0S N DN PR W |

—

Extreme Programming (XP) is a software development methodology which is intended to
improve software quality and responsiveness to changing customer requirements. As a
type of agile software development, it advocates frequent "releases" in short development
cycles, which is intended to improve productivity and introduce checkpoints at which new
customer requirements can be adopted.

Other elements of Extreme Programming include: programming in pairs or doing extensive
code review, unit testing of all code, avoiding programming of features until they are
actually needed, a flat management structure, simplicity and clarity in code, expecting
changes in the customer's requirements as time passes and the problem is better
understood, and frequent communication with the customer and among programmers.
The methodology takes its name from the idea that the beneficial elements of traditional
software engineering practices are taken to "extreme" levels. As an example, code reviews
are considered a beneficial practice; taken to the extreme, code can be reviewed
continuously, i.e. the practice of pair programming. Wikipedia

Carnegie Mellon University
Software Engineering Institute

Page 23 of 38

el mmam mmmmmrmlavitn: faiiimav mvallaca

Feedback

XP makes a big issue about its core value of Communication. This is wonderful, as communication is
definitely a key factor to the success of any project, XP or otherwise. Unfortunately, XP also makes
a big issue about not doing any documentation (or at least very little, or none at all). | think this is
partly why XP has such a broad appeal amongst earnest young programmers.

Simplicity - XP promotes a throwaway approach to source code (i.e. write, toss, rewrite). And so,
through countless waves of throwaway code, the design gradually evolves. To counter this time-
consuming, high risk approach, we are encouraged to keep everything simple. The theory is that if
you are constantly re-evaluating where the project needs to go, then you might lose only a week or
two down any particular design blind alley. From Extreme Programming Explained, "XP is making a
bet. It is betting that it is better to do a simple thing today and pay a little more tomorrow to
change it if it needs it, than to do a more complicated thing today that may never be used anyway.”

Feedback - XP values feedback as a way of determining the current state of the system. From
Extreme Programming Explained, "The business people say, "l had no idea that was so expensive.
Just do this one third of it. That will do fine for now.”

Courage - From Extreme Programming Explained, "Go home at 5PM... Notice that nothing is
hanging over your head: everything you've done for the day is integrated or tossed.” Kent Beck,
"Maybe you have three design alternatives. So, code a day's worth of each alternative, just to see
how they feel. Toss the code and start over on the most promising design."

Carnegie Mellon University

Software Engineering Institute Page 25 of 38

[T R e e

- Problems

s raar sy s

The main planning process within extreme programming is called the Planning Game. The game is a
meeting that occurs once per iteration, typically once a week. The planning process is divided into
two parts:
Release Planning: This is focused on determining what requirements are included in which near-
term releases, and when they should be delivered. The customers and developers are both part of
this. Release Planning consists of three phases:
* Exploration Phase: In this phase the customer will provide a shortlist of high-value
requirements for the system. These will be written down on user story cards.
* Commitment Phase: Within the commitment phase business and developers will commit
themselves to the functionality that will be included and the date of the next release.
* Steering Phase: In the steering phase the plan can be adjusted, new requirements can be
added and/or existing requirements can be changed or removed.

Iteration Planning: This plans the activities and tasks of the developers. In this process the customer
is not involved. Iteration Planning also consists of three phases:
* Exploration Phase: Within this phase the requirement will be translated to different tasks.
The tasks are recorded on task cards.
* Commitment Phase: The tasks will be assigned to the programmers and the time it takes to
complete will be estimated.
* Steering Phase: The tasks are performed and the end result is matched with the original user
story.

The purpose of the Planning Game is to guide the product into delivery. Instead of predicting the
exact dates of when deliverables will be needed and produced, which is difficult to do, it aims to
"steer the project" into delivery using a straightforward approach. Wikipedia

Carnegie Mellon University

Software Engineering Institute Page 27 of 38

P —e —trr—rs e = s — = — - N\ — =

ANida bt Aiiiba N N PN PNy DS

Test-driven development (TDD) is a software development process that relies on the
repetition of a very short development cycle: first the developer writes an (initially failing)
automated test case that defines a desired improvement or new function, then produces
the minimum amount of code to pass that test, and finally refactors the new code to
acceptable standards. Kent Beck, who is credited with having developed or 'rediscovered'
the technique, stated in 2003 that TDD encourages simple designs and inspires confidence.

Test-driven development is related to the test-first programming concepts of extreme
programming, begun in 1999, but more recently has created more general interest in its
own right. Wikipedia

Carnegie Mellon University

Software Engineering Institute Page 28 of 38

Pair programming is an agile software development technique in which two programmers
work together at one workstation. One, the driver, writes code while the other, the
observer, reviews each line of code as it is typed in. The two programmers switch roles
frequently. While reviewing, the observer also considers the "strategic" direction of the
work, coming up with ideas for improvements and likely future problems to address. This
frees the driver to focus all of his or her attention on the "tactical" aspects of completing
the current task, using the observer as a safety net and guide. Wikipedia

Carnegie Mellon University Page 29 of 38
Software Engineering Institute age 70

* Velocity

The XP Programmer is responsible for implementing the code to support the user stories.
The XP Tester role helps the customer define and write acceptance tests for user stories.

The XP Customer role has the responsibility of defining what is the right product to build,
determining the order in which features will be built, and making sure the product actually
works.

The XP Tracker role measures and communicates the team's progress.

The XP Coach is a supporting role which helps a team stay on process and help the team
learn.

The XP Consultant is hired when the team needs additional special knowledge.

The XP Big Boss is the manager of the project and provides the resources.

Carnegie Mellon University

Software Engineering Institute Page 30 of 38

lterative — sprints

R R e I L D R

Scrum is an iterative and incremental Agile software development framework for managing
software projects and product or application development. It defines "a flexible, holistic
product development strategy where a development team works as a unit to reach a
common goal." It challenges assumptions of the "traditional, sequential approach" to
product development. Scrum enables teams to self-organize by encouraging physical co-
location of all team members and daily face to face communication among all team
members and disciplines in the project. A key principle of Scrum is its recognition that
during a project the customers can change their minds about what they want and need
(often called requirements churn), and that unpredicted challenges cannot be easily
addressed in a traditional predictive or planned manner. As such, Scrum adopts an
empirical approach—accepting that the problem cannot be fully understood or defined,
focusing instead on maximizing the team's ability to deliver quickly and respond to
emerging requirements. Wikipedia

Carnegie Mellon University

Software Engineering Institute Page 33 of 38

e~ i g~ sttt mmss s sre -

= UUT LD Uy YYaa G

Meeting time is limited but there are frequent meetings.

Carnegie Mellon University

Software Engineering Institute Page 34 of 38

The product backlog is an ordered list of requirements that is maintained for a product. It
consists of features, bug fixes, non-functional requirements, etc.—whatever needs to be
done in order to successfully deliver a viable product. The product backlog items (PBls) are
ordered by the Product Owner based on considerations like risk, business value,
dependencies, date needed, etc.

The sprint backlog is the list of work the Development Team must address during the next
sprint. The list is derived by selecting product backlog items from the top of the product
backlog until the Development Team feels it has enough work to fill the sprint.

The sprint burn down chart is a publicly displayed chart showing remaining work in the
sprint backlog.

Carnegie Mellon University

Software Engineering Institute Page 35 of 38

Carnegie Mellon University

Software Engineering Institute Page 1 of 38

=
I
-

The Rational Unified Process (RUP) is an iterative software development process
framework created by the Rational Software Corporation, a division of IBM since 2003. RUP
is not a single concrete prescriptive process, but rather an adaptable process framework,
intended to be tailored by the development organizations and software project teams that
will select the elements of the process that are appropriate for their needs. RUP is a
specific implementation of the Unified Process.

Carnegie Mellon University Page 4 of 38
Software Engineering Institute ageso

RUP is based on a set of building blocks and content elements, describing what is to be produced, the
necessary skills required and the step-by-step explanation describing how specific development goals are to
be achieved. The main building blocks, or content elements, are the following:
* Roles (who) — A Role defines a set of related skills, competencies and responsibilities.
* Work Products (what) — A Work Product represents something resulting from a task, including all the
documents and models produced while working through the process.
* Tasks (how) — A Task describes a unit of work assigned to a Role that provides a meaningful result.

Within each iteration, the tasks are categorized into nine disciplines:
Six "engineering disciplines"

* Business Modeling
* Requirements

* Analysis and Design
* Implementation

* Test

* Deployment

Three supporting disciplines
* Configuration and Change Management
* Project Management
* Environment

The RUP has determined a project life cycle consisting of four phases. These phases allow the process to be
presented at a high level in a similar way to how a 'waterfall'-styled project might be presented, although in
essence the key to the process lies in the iterations of development that lie within all of the phases. Also, each
phase has one key objective and milestone at the end that denotes the objective being accomplished. The
visualization of RUP phases and disciplines over time is referred to as the RUP hump chart.

Four project lifecycle phases
1. Inception Phase: Stakeholders, Requirements understanding, cost/schedule estimates, architectural
prototype, compare actual expenditures versus planned expenditures.
2. Elaboration Phase: Most of the use-case descriptions are developed (80%), software architecture,
development plan for the overall project, Business case and risk list.
3. Construction Phase: Build the software system, Software Release.
4. Transition Phase: Move from development to production, training, testing

Carnegie Mellon University

Software Engineering Institute Page 5 of 38

CAavnil favinal MAAdALnA~A hkhanad

AN WA MY

specific

The Rational Unified Process describes how to effectively deploy commercially proven approaches to
software development for software development teams. These are called “best practices” not so
much because you can precisely quantify their value, but rather, because they are observed to be
commonly used in industry by successful organizations. The Rational Unified Process provides each
team member with the guidelines, templates and tool mentors necessary for the entire team to take
full advantage of among others the following best practices:

1. Develop software iteratively

2. Manage requirements

3. Use component-based architectures
4. Visually model software

5. Verify software quality

6. Control changes to software

Carnegie Mellon University

Software Engineering Institute Page 6 of 38

* Use case

* Design

RUP activities create and maintain models. Rather than focusing on the production

of large amount of paper documents, the Unified Process emphasizes the development and
maintenance of models—semantically rich representations of the software system under
development.

One of the major problems with most business engineering efforts, is that the software engineering
and the business engineering community do not communicate properly with each other. This leads to
the output from business engineering is not being used properly as input to the software development
effort, and vice-versa. The Rational Unified Process addresses this by providing a common language
and process for both communities, as well as showing how to create and maintain direct traceability
between business and software models.

In Business Modeling we document business processes using so called business use cases. This
assures a common understanding among all stakeholders of what business process needs to be
supported in the organization. The business use cases are analyzed to understand how the business
should support the business processes. This is documented in a business object-model. Many
projects may choose not to do business modeling.

Carnegie Mellon University

Software Engineering Institute Page 7 of 38

Planning

* Measurement
* Risk
* Problems

Software Project Management is the art of balancing competing objectives, managing risk, and
overcoming constraints to deliver, successfully, a product in which meets the needs of both
customers (the payers of bills) and the users. The fact that so few projects are unarguably successful
is comment enough on the difficulty of the task.

RUP provides:

» A framework for managing software-intensive projects.

* Practical guidelines for planning, staffing, executing, and monitoring projects.
* A framework for managing risk.

It is not a recipe for success, but it presents an approach to managing the project that will markedly
improve the odds of delivering successful software.

Carnegie Mellon University

Software Engineering Institute Page 8 of 38

T MAIUIIIGUL ITVITVWTI P e~
T WUUT ITVITVWECI R At
T wedlyll ieviewel ———r mieriav e~ g s

* Implementer

RUP role definitions are consistent with the notion of separating breadth and depth.
Personality types for breadth workers and depth workers are very different. Breadth work is
quick, inexact, and resilient. Depth work takes much more time, requires attention to
detail, and must be of significantly better quality.

For example for requirements:
Breadth role is the Requirements Systems Analyst who discovers all requirement use cases.
Depth role is the Requirements Engineer who details a single set of requirement use cases.

Carnegie Mellon University

Software Engineering Institute Page 9 of 38

g e e s~~~ -~

Agile Unified Process (AUP) is a simplified version of the IBM Rational Unified Process
(RUP) developed by Scott Ambler. It describes a simple, easy to understand approach to
developing business application software using agile techniques and concepts yet still
remaining true to the RUP. The AUP applies agile techniques including test driven

development (TDD), Agile Modeling, Agile change management, and database refactoring
to improve productivity. Wikipedia

Carnegie Mellon University Page 14 of 38
Software Engineering Institute age 1%0

The Agile Unified Process distinguishes between two types of iterations. A development
release iteration results in a deployment to the quality-assurance and/or demo area. A

production release iteration results in a deployment to the production area. This is a
significant refinement to RUP.

Carnegie Mellon University Page 15 of 38
Software Engineering Institute age 10

Implementation

Test

rlyjouL inaliaycelliciit

Environment

AUP has seven disciplines:

1. Model. Understand the business of the organization, the problem domain being
addressed by the project, and identify a viable solution to address the problem domain.

2. Implementation. Transform model(s) into executable code and perform a basic level of
testing, in particular unit testing.

3. Test. Perform an objective evaluation to ensure quality. This includes finding defects,
validating that the system works as designed, and verifying that the requirements are
met.

4. Deployment. Plan for the delivery of the system and to execute the plan to make the
system available to end users.

5. Configuration Management. Manage access to project artifacts. This includes not only
tracking artifact versions over time but also controlling and managing changes to them.

6. Project Management. Direct the activities that take place within the project. This
includes managing risks, directing people (assigning tasks, tracking progress, etc.), and
coordinating with people and systems outside the scope of the project to be sure that it
is delivered on time and within budget.

7. Environment. Support the rest of the effort by ensuring that the proper process,
guidance (standards and guidelines), and tools (hardware, software, etc.) are available
for the team as needed.

Wikipedia

Carnegie Mellon University

Software Engineering Institute Page 16 of 38

— et i - s~ e~~~

Eclipse
Very lean UP

OIS TS IV I MM I S T Y

The Open Unified Process (OpenUP) is a part of the Eclipse Process Framework (EPF), an open source
process framework developed within the Eclipse Foundation. Its goals are to make it easy to adopt the
core of RUP. OpenUP preserves the essential characteristics of RUP, which include iterative
development, use cases and scenarios driving development, risk management, and architecture-centric
approach. Most optional parts of RUP have been excluded, and many elements have been merged. The
result is a much simpler process that is still true to RUP principles.

OpenUP targets small and collocated teams interested in agile and iterative development. Small projects
constitute teams of 3 to 6 people and involve 3 to 6 months of development effort. Wikipedia

OpenUP is driven by the four core principles listed below that support a statement in the Agile Manifesto
(slides 72-73). Principles capture the general intentions behind a process and create the foundation for
interpreting roles and work

products, and for performing tasks:

* Collaborate to align interests and share understanding. This principle promotes practices that
foster a healthy team environment, enable collaboration and develop a shared understanding of
the project.

* Balance competing priorities to maximize stakeholder value. This principle promotes practices that
allow project participants and stakeholders to develop a solution that maximizes stakeholder
benefits, and is compliant with constraints placed on the project.

* Focus on the architecture early to minimize risks and organize development. This principle
promotes practices that allow the team to focus on architecture to minimize risks and organize
development.

* Evolve to continuously obtain feedback and improve. This principle promotes practices that allow
the team to get early and continuous feedback from stakeholders, and demonstrate incremental
value to them.

Carnegie Mellon University

Software Engineering Institute Page 17 of 38

ANinvs vaAla /1 oA $thia AnmA $Alba Avit braall \

Architect

Stakeholder

Tester

Analyst represents customer and end-user concerns by gathering input from stakeholders to
understand the problem to be solved and by capturing and setting priorities for requirements.

Any Role represents anyone on the team that can perform general tasks.

Architect is responsible for designing the software architecture, which includes making the key
technical decisions that constrain the overall design and implementation of the project.

Developer is responsible for developing a part of the system, including designing it to fit into the
architecture, and then implementing, unit-testing, and integrating the components that are part of the
solution.

Project Manager leads the planning of the project in collaboration with stakeholders and team,
coordinates interactions with the stakeholders, and keeps the project team focused on meeting the
project objectives.

Stakeholder represents interest groups whose needs must be satisfied by the project. It is a role that
may be played by anyone who is (or potentially will be) materially affected by the outcome of the
project.

Tester is responsible for the core activities of the test effort, such as identifying, defining,
implementing, and conducting the necessary tests, as well as logging the outcomes of the testing and
analyzing the results.

Carnegie Mellon University

Software Engineering Institute Page 18 of 38

I m MAIe TIv MMM P I UL WS I I L MATI) LYy A ~ ey

Summarize the main points of the talk.
Make sure that the summary is aligned with the lesson objectives.

Carnegie Mellon University

Software Engineering Institute Page 20 of 38

zol 25

Boehm and Turner concluded that there are five critical factors involved in determining the
relative suitability of agile or plan-drive methods in a particular project situation. They are

1. size

2. criticality
3. dynamism
4. personnel
5. culture

Size and criticality distinguish between the lighter-weight (towards center) and heavier-
weight (towards periphery) methods. The culture axis reflects the reality that agile
methods will succeed better in a culture that “thrives on chaos” than one that “thrives on
order” and vice versa. The other two axes are asymmetrical in that both agile and plan-
driven methods are likely to succeed at one end, and only one of them is likely to succeed
at the other. For dynamism, agile methods are comfortable with both high and low rates of
change, but plan-driven methods prefer low rates of change. For the personnel scale, plan-
driven methods can work well with both high and low skill levels, agile methods require a
richer mix of higher level skills.

By rating a project along each of the five axes, you can visibly evaluate its home ground
relationships. If all the ratings are near the center, agile may be best. If they are near the
periphery, you may best succeed with a plan-driven method.

Carnegie Mellon University

Software Engineering Institute Page 32 of 38

I\\/1 10 IIII|JUI anie.

A HISUIVUS WUIR 1O 1S 1y,
* Project
* Team
» Organization

AT T T o R e 4

There is no “one” right method for an organization. In fact, most organizations support
several methods and it will depend on the projects characteristics. When using a method,
it is important that people are trained on the method and they understand how it will be

implemented on that project.

Carnegie Mellon University
Software Engineering Institute

Page 35 of 38

R L

ERRER R

R et R Tl A R A AT ~ ey

Summarize the main points of the talk.
Make sure that the summary is aligned with the lesson objectives.

Carnegie Mellon University
Software Engineering Institute

Page 37 of 38

Carnegie Mellon University

Software Engineering Institute Page 1 of 42

Richard Bejtlich has a humorous description of the security most organizations are
practicing. He refers to it as “Soccer Goal Security.”

“I see the goalie as representing most preventative security countermeasures. Player 9 is
the threat. The soccer ball is an exploit. They are attacking an enterprise, represented by
the soccer net. The goalie is addressing the threat he expects, namely someone trying to
score from the side of the net he is defending. In many cases the goalie is fighting the last
war; perhaps the last time he was scored upon came from the side he now defends?

The threat is smart and unpredictable, attacking a different part of the net. The net itself
(the enterprise) is huge. Not only is the front of the net open, the net itself is riddled with
holes. A particularly clever attacker might see his objective as getting the ball in the net
using any means necessary. That might include cutting the ball into smaller pieces and
sending the fragments through holes in the net. Another attacker might dig his way under
the goal and send the ball up through a tunnel. Yet another attacker might wait for the
goalie to get tired, or drop his guard, or lose his vision at night. A really vicious threat would
attack the goalie himself”

Carnegie Mellon University

Software Engineering Institute Page 5 of 42

[Soo Hoo 01. “Tangible ROI through Secure Software Engineering]

“Findings indicate that significant cost savings and other advantages are achieved when
security analysis and secure engineering practices are introduced early in the development
cycle. The return on investment ranges from 12 percent to 21 percent, with the highest rate
of return occurring when analysis is performed during application design.” [security analysis
costs, defects found, vuls fixed, cost to fix by phase]

“According to software quality assurance empirical research, one dollar required to resolve
an issue during the design phase grows into 60 to 100 dollars to resolve the same issue
after the application has shipped.”

“Since nearly three-quarters of security-related defects are design issues that could be
resolved inexpensively during the early stages, a significant opportunity for cost savings
exists when secure software engineering principles are applied during design.”

Carnegie Mellon University

Software Engineering Institute Page 7 of 42

bl h i e R LR T e LS SRR I R R

Even the best efforts have met considerable resistance because the problem is mostly
organizational and cultural, not technical.

The purpose of the ESSF is to organize everybody’s responsibility for achieving secure
software into a “who, what, when” structure — describe what activities each role is
responsible for and at what point the activity should be conducted. Focus on who needs to
do what and when.

1. Assess the organization’s current software development and security strengths and
weaknesses (s/w built in-house, outsourced, COTS, vendor solution)

2. Don't start off with low hanging fruit (like a vul analysis tool) or expect developers to
add practices that they haven’t been budgeted for

3. Like IS, need executive sponsorship, clear roles, responsibilities, and clear objectives
that tie to business requirements.

4. Don’t use just network security folks. Need to integrate security experts into software
development teams.

5. Document technology-specific prescriptive guidance for developers.

6. Don’t require teams to begin conducting every activity on day one. Slowly introduce the
simplest activities first, then iterate.

7. Establish a goal of improving attack resistance in each activity from its inception.

In the context of ESSF, governance is competency in measuring software-induced risk and
supporting an objective decision-making process for remediation and software release.

Carnegie Mellon University

Software Engineering Institute Page 11 of 42

et g et LIRS B et Y T e

Touchpoints are tasks and activities that augment existing development processes. They
are also used for outsource assurance and COTS validation.

Microsoft’s Security Development Lifecycle (SDL)

OWASP (Open Web Application Testing Security Project) Testing Framework
[http://www.owasp.org/index.php/The_ OWASP_Testing_Framework]

* Phase 1: Before Development Begins
* Phase 2: During Definition and Design
* Phase 3: During Development

* Phase 4: During Deployment

* Phase 5: Maintenance and Operations

Carnegie Mellon University

Software Engineering Institute Page 12 of 42

R R I et T LS BT e A

Referenced in [Fedchak 07] “Software Project Management for Software Assurance”

Carnegie Mellon University

Software Engineering Institute Page 14 of 42

e e e -~ J et s e~ s~ —— = —

\\///

Need to consider both risks to the software and risks to the information that the software
processes.

Drive unacceptable risk issues back into the development life cycle.

Systems and software change as the development process progresses — important to revisit
the risk assessment to verify that unacceptable risks have not been introduced.

This said, “rarely does an organization use a risk mgmt framework to consistently calculate
a risk’s impact at the project mgmt or portfolio level.” so the s/w org needs to make this
translation and connection to gain business owner understanding and respect — to choose
mitigating security risk over time-to-market, for example [Steven 06]

A candidate checklist to aid in software security risk identification is available in [Fedchak
07] — “Software Project Management for Software Assurance”

Carnegie Mellon University Pace 15 of 42
Software Engineering Institute age 10

[http://capec.mitre.org/] [http://capec.mitre.org/data/index.html]

To be effective, developers need to think outside of the box and to have a firm grasp of the attacker’s
perspective and the approaches used to exploit software.

Attack patterns are a powerful mechanism to capture and communicate the attacker’s perspective. They are
descriptions of common methods for exploiting software. They derive from the concept of design patterns
applied in a destructive rather than constructive context and are generated from in-depth analysis of specific
real-world exploit examples.

One example: Buffer overflow: improper or missing bounds checking. Attacker is able to write past the
boundaries of allocated buffer regions in memory; able to crash system or redirect execution

Man in the middle
Motivation data modification, privilege escalation, information leakage

Description This type of attack targets the communication between two components (typically client and
server). The attacker places himself in the communication channel between the two components. Whenever
one component attempts to communicate with the other (data flow, authentication challenges, etc.), the data
first goes to the attacker, who has the opportunity to observe or alter it, and it is then passed on to the other
component as if it was never intercepted. This interposition is transparent leaving the two compromised
components unaware of the potential corruption or leakage of their communications. The potential for Man-in-
the-Middle attacks yields an implicit lack of trust in communication or identify between two components.

Attack Execution Flow The attacker probes to determine the nature and mechanism of communication between
two components looking for opportunities to exploit.

The attacker inserts himself into the communication channel initially acting as a routing proxy between the two
targeted components.

The attacker observes, filters or alters passed data of its choosing to gain access to sensitive information or to
manipulate the actions of the two target components for his own purposes.

Attack Prerequisites There are two components communicating with each other.An attacker is able to identify
the nature and mechanism of communication between the two target components. An attacker can eavesdrop
on the communication between the target components. Strong mutual authentication is not used between the
two target components yielding opportunity for attacker interposition. The communication occurs in clear (not
encrypted) or with insufficient and spoofable encryption.

Solutions: encryption, strong mutual authentication

Carnegie Mellon University

Software Engineering Institute Page 17 of 42

Clrnilavta A lanAal AAaaA~

cviuelice

- . -

PR I R AR PR

P amnidavn mmamnwla mvacmamaa Awm

O L S L S T - T = T Ul P DR S A) AP A D |

[Fedchak 07]

An assurance case can be a justification for confidence that a software or software-
intensive system is secure. One definition of an assurance case is that it is:

“a documented body of evidence that provides a convincing and valid argument that a

specified set of critical claims regarding a system’s properties are adequately justified for a

given application in a given environment” [Ankrum 2006].

Carnegie Mellon University
Software Engineering Institute

Page 18 of 42

permissions?

Ask:

e v mataav e v e

g = e

e

i~y

Inclusion of a new requirement or feature includes determining how it might be

unintentionally misused or intentionally abused.

For example, assuming that the connection between a Web server and a database server

can always be trusted. Attacker will try to make the Web server send inappropriate

requests to access valuable data.

Users can’t enter more than 50 characters.

Carnegie Mellon University
Software Engineering Institute

Page 19 of 42

* risk mitigation planning

Parallels info security risk assessment. An architectural risk assessment validates that security
requirements were translated into aspects of the s/w’s design and that the design resists attack.

While much of the fanfare of software security today is focused on buffer overflows, SQL injection, and
other implementation bugs, the reality is that approximately half of the defects leading to security
vulnerabilities found in today’s software are actually due to flaws in architecture and design [McGraw
2006].

The goal of building security into the architecture and design phase of the SDLC is to reduce significantly
the number of flaws as early as possible while also reducing ambiguities and other weaknesses.

Requires experience, expertise, knowledge; often human/expert intensive. Architectural-level flaws can
currently only be found through human analysis.

While architectural risk analysis is not focused primarily on assets, it does depend on the accurate
identification of the software’s ultimate purpose and how that purpose ties into the business’s activities in
order to qualify and quantify the impact of risks identified during the process. Because of this, a solid
understanding of the assets that the software guards or uses should be considered a prerequisite to
performing architectural risks analysis.

Software characterization: what the software is, how it works, components, interfaces, zones of trust, one
page

Threat analysis: identify relevant threats, attacker access/skill level, map to specific vulnerabilities, identify
mitigations

Arch vul assessment: attack resistance (uses attack patterns), ambiguity, and dependency analysis.
Ambiguity example: ramifications of a user login that persists after the account is locked. Dependency
analysis: vuls associated with the s/w’s execution environment (OS, network, application platform).

Risk likelihood: threat motivation/capability, vul impact (attractiveness to attacker), effectiveness of
current controls. Qualitative high, medium, low

Risk impact: 3x3 matrix of likelihood (high, med, low) vs. impact (high, med, low)

Carnegie Mellon University

Software Engineering Institute Page 20 of 42

e e~ m e e~ s s— rr— s =~ g

denv)

resource collisions)

-~ 1 ‘ o ' o 1 . o

coae.

Static code checkers, runtime code checkers, profiling tools, penetration testing tools,
stress test tools, and application scanning tools can find some security bugs in code.

[cert.org/secure-coding]

Most vulnerabilities stem from a relatively small number of common programming errors.
By identifying insecure coding practices and developing secure alternatives, software
developers can take practical steps to reduce or eliminate vulnerabilities before
deployment.

Carnegie Mellon University

Software Engineering Institute Page 21 of 42

One important difference between security testing and other testing activities is that the
security test engineer needs to emulate an intelligent attacker. An adversary might do
things that no ordinary user would do, such as entering a thousand-character surname or
repeatedly trying to corrupt a temporary file. Test engineers must consider actions that are
far outside the range of normal activity and might not even be regarded as legitimate tests
under other circumstances. A security test engineer must think like the attacker and find
the weak spots first.

Security testing is different from traditional software testing in that it emphasizes what an
application should not do rather than what it should do. While it sometimes tests
conformance to positive requirements such as “user accounts are disabled after three
unsuccessful login attempts” and “network traffic must be encrypted,” more often it tests
negative requirements [Fink 1997] such as “outside attackers should not be able to modify
the contents of the Web page” and “unauthorized users should not be able to access data.”

[Use of mitigations for negative requirements] For example, the risk of password-cracking
attacks can be mitigated by disabling an account after three unsuccessful login attempts,
and the risk of SQL injection attacks from a Web interface can be mitigated by using an
input validation whitelist (a list of all known good inputs which a system is permitted to
accept) that excludes characters used to perform this type of attack.

Carnegie Mellon University

Software Engineering Institute Page 22 of 42

FRALIMMALL MIT I g M IS I VA I M M L
TUVMID U WAL I VDI T A Y T
VUV ULy OV 1V VIV DAV IS
~
PO HVN T PP L e e S L ey B IR IR + D

Feed penetration testing results back into design and development.

Carnegie Mellon University
Software Engineering Institute

Page 23 of 42

The Product Security Office drives the product security programs across EMC that focuses on
preventing our products from introducing new risks into our customers’ IT infrastructures. We are
rolling out these programs across EMC product teams by providing standards, practices and
enabling resources that addresses product security at every stage of the product lifecycle, from
when the product is being defined to when it is in product and supported for our customers.

Our Security Development Lifecycle focuses on security controls required as part of the product
development before the product is released for General Availability.

Our Security Certification program focus on assisting and coordinating security certifications such
as FIPS 140-2 or Common Criteria that our products are required to support on specific markets

Our Vulnerability Response program deals with vulnerabilities impacting our products after they
have shipped. It provides a central point for our customer to report vulnerabilities and for EMC
products to coordinate the issuance or remedies or security patches that addresses these
vulnerabilities

Finally, our Software Supply Chain Risk Management Program defines the standards and
requirements for product code integrity that govern the inclusion of external components and open
source software into our products, the protection of our source code systems and the delivery and
support of our products to our customers.

Carnegie Mellon University

Software Engineering Institute Page 25 of 42

B et vttt b R R Sl

- OACCENNA A _— -_——am s s

* OUL VAU Y Uy Tunnivvr v

—mmma=ladl... AN L

There is plenty of confusion (especially in the press) about methodologies and
measurement tools. The BSIMM is not a methodology. It is a measurement tool.

The BSIMMS is used to measure and describe (in common terms) each of the 109 distinct
SSDL methodologies in use in the current BSIMMS8 Community.

See the InformIT article BSIMM versus SAFECode and Other Kaiju Cinema (Dec 26, 2011)
http://bit.ly/tLIOn)

Carnegie Mellon University Page 27 of 42
Software Engineering Institute age /o

Originally conceived in 2006 by Gary McGraw and Sammy Migues (currently with
Synopsis Software Integrity Group, then of Cigital) and Brian Chess (then of Fortify). The
first BSIMM was published in 2009 by Synopsis, Inc..

BSIMMS was released on 9/20/2017

e BSIMMS includes data from 109 firms in six vertical markets and a longitudinal study.
Data gathered from firms during previous 42 months.

¢ Thirty-six firms were measured twice or more (giving us Longitudinal Study data) and the
data show measurable improvement

e BSIMMS describes 113 activities divided into 12 practices.

e The BSIMMS data set has 256 distinct measurements (some firms use BSIMM to
measure distinct business units and some have been measured more than once).

e BSIMMBS describes the work of 1,268 SSG members working with a satellite of 3051
people to secure the software developed by 290,852 developers as part of a combined
portfolio of 94,802 applications.

The BSIMM remains the only measuring stick for software security initiatives based on
science. It is extremely useful for comparing the initiative of any given firm to a large group
of similar firms. The BSIMM has been used by multiple firms to strategize and plan their
software security initiatives and measure the results.

Carnegie Mellon University

Software Engineering Institute Page 28 of 42

e rsrrer o~ siseg e e~

I Ul uuviilianio

AR A SR L

We captured data through interviews, but we needed a place -- sort of an archaeological
grid -- to sort the data and make it available to everyone. In the beginning as it were, we
simply had the Software Security Framework. Literally, we had just one sheet of paper with
that diagram on it and a general understanding of what might go in each bucket.

Carnegie Mellon University

Software Engineering Institute Page 29 of 42

DOJIIVIIVIO, Frdge O

72 of 109 firms

Carnegie Mellon University

Software Engineering Institute Page 30 of 42

In 2008, we started with interviews of the Software Security Group (SSG) owners at nine
firms. We effectively asked each to "Tell me about everything you do to make software
security happen" and then gently guided the conversation from there. We didn't ask any
yes/no questions and were very diligent about being observers rather than guiding the
conversation. We sorted through all the interview data, removed all the duplicates and
wishful thinking, and organized the remaining individual activities into the practices of the

SSF. There were 110 activities in BSIMM1. These activities are organized into three levels of
increasing maturity.

Carnegie Mellon University Page 31 of 42
Software Engineering Institute age .0

This is the 109 firm raw data about activities.

Highlighted in yellow are the top 12 activities performed by 68 (62%) of the 109 firms

Carnegie Mellon University

Software Engineering Institute Page 32 of 42

More specifics about the top 12 activities performed by 68 (62%) of the 109 firms

Carnegie Mellon University

Software Engineering Institute Page 33 of 42

et R R i e SEIETINEC T T R

This is a comparison of a FAKE firm’s highest level of activity observed for each of the 12
practices (a “high water mark” in blue) against an average of high-water marks over a group
of firms.

Note where the blue is INSIDE the green. These are practices where the firm is
substantially behind what we have observed elsewhere. In general, firms with a “round”
curve have a more balanced program than firms with a “prickly” shape or worse yet a
“butterfly” shape. Remember, this is not a value judgment, it is simply a comparison to
what other firms are doing.

Carnegie Mellon University

Software Engineering Institute Page 34 of 42

— = rirririe mie e e — i grssr e e = w g

BSIMMS includes a longitudinal study of 36 firms which were measured at least twice. The
average time between measurements was 25.8 months. According to the study
“remeasurement over time shows a clear trend of increased maturity among the 36 firms
remeasured thus far. The raw score went up in 29 of the 36 firms. Across all 36 firms, the
observation count increased by an average of 10.3 (33.4%). Software security initiatives
mature over time.”

Carnegie Mellon University Pace 35 of 42
Software Engineering Institute age 320

a llan H4+An AnAn iidhAava viAans AtAnAd

The state of the BSIMM model as of BSIMMS.

Carnegie Mellon University

Software Engineering Institute Page 36 of 42

ICT - Information and Communication Technology

Carnegie Mellon University

Software Engineering Institute Page 38 of 42

Nr~nAanisatinn MNMativibho

EMC’s approach to measuring product security is captured in the Product Security Policy,
which is our internal standard that we have mapped to customer requirements and the
various regulations such as SOX, HIPAA, PCI DSS, FISMA etc.

3 standards:

1. Architecture and design stds capturing Authentication, Authz, Accountability, crypto,
design principles type of requirements

2. Coding stds. cover basic coding issues that can lead to various vulnerabilities such as
validation issues, various injection vulns, web and C/C++ coding stds etc.

3. Process stds. cover things/ activities that product teams should do in order to bake
security in their dev lifecycle

Assessment gives us 2 things: Product gaps and Process gaps that give us the level of risk in
the product due to non-compliance to the policy and the org maturity level which is
primarily based on the process gaps.

Talk about using health risk assessment as a way to do security.

Carnegie Mellon University

Software Engineering Institute Page 39 of 42

e e ettt ara vt tan eyt tarnr n e g ey
— . 1 Trusted
| - I —_———

| | |

Open — Trusted Technology Provider Standard

Carnegie Mellon University

Software Engineering Institute Page 40 of 42

AN A o

v

Some top categories

Source: Common Weaknesses Enumeration (CWE)

Data handling
APl abuse
Security features
Time & state
Error handling
Code quality
Encapsulation

Carnegie Mellon University
Software Engineering Institute

Page 41 of 42

Carnegie Mellon University

Software Engineering Institute Page 1 of 26

Method for applying security to an organization (not just SDLC)
Organization -
* awareness programs

* metrics
* global security policies
Application -

* threat modeling
* arch review

* pen test

* code review

Adaptable to any organization or development process
* Fits closest to Rational Unified Process (iterative process with heavy focus on roles)
* also works with Waterfall and to some extent Agile

Intended to be a complete solution that organizations can read and then implement iteratively
* The idea is for this documentation can be handed to a responsible person and they will have
enough information to implement one or more parts in their organization

Focuses on leveraging a database of knowledge (much provided directly by CLASP) and automated
tools/processes
* CLASP provides a vulnerability lexicon, security principles and other information as a resource
to perform security activities
* Also recommends utilizing automated tools whenever possible (code review, assessments,
etc.)

Carnegie Mellon University

Software Engineering Institute Page 5 of 26

yuiucmico

BP1: Institute security awareness program

BP2: Perform application assessments
* Perform security analysis of system requirements and design (threat modeling)
* Research and assess security posture of technology solutions
* Perform source-level security review
* Identify, implement, and perform security tests
* Verify security attributes of resources

BP3: Capture Security Requirements
* Detail misuse cases
* Document security-relevant requirements
* Identify attack surface
* |dentify global security policy
* Identify resources and trust boundaries
* |dentify user roles and resource capabilities
* Specify operational environment

BP3: Implement secure development process
* Annotate class designs with security properties
* Apply security principles to design
* Implement and elaborate resource policies and security technologies
* Implement interface contracts
* Integrate security analysis into source management process
* Perform code signing

Carnegie Mellon University

Software Engineering Institute Page 6 of 26

LR it e LR S I S e R

LU VU MUV D U U UMV UL AL DL

BP5: Build vulnerability remediation procedures
* Address reported security issues
* Manage security issue disclosure process

BP6: Define and monitor metrics
BP7: Publish operational security guidelines

* Build operational security guide
* Specify database security configuration

Carnegie Mellon University

Software Engineering Institute Page 7 of 26

-~ —— e — g e

Organization used in learning and presenting CLASP material
Documentation corresponds to these topics

Detail later

Frame conversation

Carnegie Mellon University Page 8 of 26
Software Engineering Institute ageso

—r e = m—g o~ s re e~ = e e e~~~

TAVUAM LTI U TUWT WL I AWV e UM VI VY

implement

IN\wicvo \I Vi, MIvinouL, IJUOIHIIUI, IIIIPIUIIIUIILUI, ULU-}

- . we~ N A gt et L . . . 1 1 1

Process for implementing security

Stakeholders are all the people involved in the planning, design, implementation, and
delivery of the project.

PM is the driving force behind CLASP implementation.

Security Activities are tied to Roles such as Architect, PM, Designer, Requirements Specifier,
Implementer, etc. instead of steps of the development process.

Carnegie Mellon University Page 9 of 26
Software Engineering Institute age o

———to Frrors

T VIVIULUU UL UVULILY ULl VIVGY

4

Problem types “basic causes’
Categories

Exposure Periods
* Development lifecycle artifact where vulnerability is introduced
* Examples: requirements specification; architecture and design; implementation; and
deployment

Consequences

Violated CLASP “Security Service”
* Authorization (resource access control)
* Confidentiality (of data or other resources)
* Authentication (identity establishment and integrity)
* Availability (denial of service)
* Accountability
* Non-repudiation

Platforms
* Programming languages, OS's, Database Products, etc

Resources
* resources needed to exploit the issue
* Ex:local account, physical access to network, etc

Risk Assessment

* Severity and Likelihood
Avoidance and Mitigation
* Development lifecycle artifact and activity that can be used to eliminate the issue in the
future

Knowledge Base Provided!!!!
* Provides the majority of this information already

Carnegie Mellon University

Software Engineering Institute Page 11 of 26

IV N bl AN nuUuuvw

| = VAP A H PR

- MUy weailll avvouliavice

A " : . - . ' . e v

Responsibilities
* awareness within team
— Training classes
— hold meetings to encourage discussion about security documentation (policies,
requirements, threat models, etc)
* outside of team
— demonstrate impact of application security on the business to organization (CSO,
ClIO, etc)
* Manage Metrics
— May not be collecting metrics but needs to analyze them
o determine organization and application security posture
o0 How to improve process
0 how to improve individuals

Carnegie Mellon University

Software Engineering Institute Page 13 of 26

vvvvvvvvvv - e R R R L T TR

T e et LR TR

Requirements specifier often does not have the security expertise to provide detailed and
complete security requirements.

can provide initial high-level goals

Other roles will often contribute security requirements when carrying out other tasks such
as threat modelling.

Carnegie Mellon University

Software Engineering Institute Page 14 of 26

Responsibilities:

T 1vo aliu wuliio

Pros and Cons
* Reduced cost in high priced extremely detail oriented security training
* Those three roles can be trained in CLASP
* Developers simply follow organization's policies, standards, and guidelines and only
have to worry about implementing bugs
 Still need awareness training to contribute to misuse cases, threat modeling,
architecture/design review, etc.

Carnegie Mellon University

Software Engineering Institute Page 17 of 26

ASU site has resources, quizzes and exams that could be useful.
For more resources: https://softwareenterprise.asu.edu/curricular-modules

Carnegie Mellon University

Software Engineering Institute Page 1 of 34

Carnegie Mellon University

Software Engineering Institute Page 1 of 27

P B e T L L D e B T T T SR DR 1 U N R B ol R e e e |
| PR R | ARy DT | A e 6T SN L iy Dy e,
' ' r
RN S S RN A R,

Instructor Note: For the review mentioned here, the instructor will need to provide a

project for the students to work on. Usually we would do a project that runs the length of
the course, with a mix of individual and team assignments.

Carnegie Mellon University
Software Engineering Institute

Page 7 of 27

Carnegie Mellon University

Software Engineering Institute Page 1 of 36

It is well recognized in industry that requirements engineering is critical to the
success of any major development project. Several authoritative studies have
shown that requirements engineering defects cost 10 to 200 times as much to
correct once fielded than if they were detected during requirements development.

Carnegie Mellon University Page 5 of 36
Software Engineering Institute age» o

Rt bhd e b A madll.

Often the security requirements are developed independently of the rest of the
requirements engineering activity and hence are not integrated into the mainstream
of the requirements activities. As a result, security requirements that are specific to
the system and that provide for protection of essential services and assets are often
neglected.

The requirements elicitation and analysis that is needed to get a better set of
security requirements seldom takes place.

Typically we focus on what the system should do and not what it should not do.
Often security related requirements need to be framed in the light of what the
system should not do.

Carnegie Mellon University

Software Engineering Institute Page 9 of 36

This is an example from a presentation made on Identifying and Reducing Software
Risk in the Enterprise by Fortify Software.

This example highlights the enormity of the situation with respect to fixing bugs later
in the life cycle. As can be seen from the tables, on the left, most defects were
identified and fixed in the testing and maintenance phases of the project. However,
the table on the right shows that most of the defects were identified and fixed
earlier, i.e. in the coding and testing phases of the project. As a result, it resulted in
saving up to $2 million.

Thus, it is of paramount importance to detect and fix defects as early in the project
life cycle as possible.

Carnegie Mellon University

Software Engineering Institute Page 10 of 36

Microsoft SDL process includes more attention to requirements, especially with the use of
STRIDE for threat modeling and attack surface. (They have their own method and do not
use SQUARE.)

Carnegie Mellon University

Software Engineering Institute Page 11 of 36

SREP

Security Patterns
TROPOS

Others

These are some of the methods and processes that can be used in identifying security requirements:

Security Quality Requirements Engineering (SQUARE) is a process aimed specifically at security requirements
engineering.

The Comprehensive, Lightweight Application Security Process (CLASP) approach to security requirements
engineering [OWASP 2007] is a life-cycle process that suggests a number of different activities across the
development life cycle to improve security. Among these is a specific approach for security requirements.

Core security requirements artifacts [Moffett 2004] takes an artifact view and starts with the artifacts that are
needed to achieve better security requirements.

The Security Requirements Engineering Process (SREP) [Mellado 2007] is a nine-step process that is based
partially on SQUARE but incorporates consideration of the Common Criteria and notions of reuse.

Security patterns are useful in going from requirements to architectures and then designs [Haley 2007, Rosado
2006, Weiss 2007].

Tropos is a self-contained life-cycle approach [Giorgini 2007]. It is very specific in terms of how to go about
requirements specification.

Other useful techniques are the use of attack trees in security requirements engineering [Ellison 2003] and
misuse and abuse cases [Alexander 2003, Fernandez 2007, Sindre 2000]. Formal specification approaches to
security requirements, such as Software Cost Reduction (SCR) [Heitmeyer 2002] have also been useful. The
higher levels of the Common Criteria [CCEVS 2007] provide similar results.

Carnegie Mellon University

Software Engineering Institute Page 12 of 36

~— A J RMAMAIILY I AT MM I LT e g iy

+ SQUARE-Lite

N NK ST U N IV S AWMU

Briefly introduce SQUARE

Carnegie Mellon University

Software Engineering Institute Page 13 of 36

dappluvauvliis

SQUARE: Mention that this lecture will be a brief overview of SQUARE. All nine steps will be
introduced and skimmed over. The two lectures following will describe it in detail.

SQUARE history: The Software Engineering Institute’s Networked Systems Survivability

(NSS) Program at Carnegie Mellon University developed SQUARE as a methodology to help
organizations build security into the early stages of the production life cycle. Development
of the SQUARE methodology started in 2003. It was initially baselined in 2005. Since then

it has been published in papers and book chapters. There is a robust tool to support
SQUARE.

Carnegie Mellon University Page 15 of 36
Software Engineering Institute age 10

et R R R R L S Rl

Describe the two main parties involved. Define what stakeholder means in this situation (it
represents only the clients).

Reiterate that SQUARE is not a new requirements engineering process but meant to be
used with an existing RE process.

Objective is to elicit security requirements artifact as a documented artifact. Security
requirements are seen as quality attributes.

It is a well documented process.
The time needed to execute SQUARE depends on the size of the project.

A lighter version of SQUARE called SQUARE-Lite is also being developed. Using SQUARE-
Lite, one can complete the process in a shorter time than the full SQUARE.

Actors involved: A team of stakeholders (in this context, stakeholders would only mean the
clients) and a requirements engineering team (should ideally have expertise in security)

Carnegie Mellon University

Software Engineering Institute Page 16 of 36

- o se— = e~

Run through these steps, preferably with an example. Use this example throughout this
lecture.

Could use the example from the previous lecture and build on one aspect of it.

Carnegie Mellon University

Software Engineering Institute Page 18 of 36

-~

— The requirements engineering team and stakeholders must first agree on a
common set of terminology and definitions.

— Guarantees effective and clear communication throughout the requirements
engineering process

— Resolves ambiguity and differences in perspective

— SQUARE. Using public resources, such as the Software Engineering Body of
Knowledge, (SWEBOK) [IEEE 05], IEEE 610.12 Standard Glossary of Software
Engineering Terminology, [IEEE 90], and Wikipedia.

Examples: access control (ACL), antivirus software, artifact, asset, attack, audit,
authentication, availability, back door, breach, brute force, buffer overflow, cache
cramming, cache poisoning, confidentiality, control.

Carnegie Mellon University

Software Engineering Institute Page 19 of 36

-~ -

Initially, different stakeholders will likely have different security goals. Therefore they
should formally agree on a set of prioritized security goals for the project. Without overall
security goals for the project, it is impossible to identify the priority and relevance of any
security requirements that are generated.

The security goals of the project must be in clear support of the project’s overall business
goal, which also must be identified and enumerated in this step.

Once the goals of the various stakeholders have been identified, they must be prioritized.
In the absence of consensus, an executive decision may be needed to prioritize the goals.

Generate security goals as opposed to requirements or recommendations.

Exit criteria: A single business goal for the project and several prioritized security goals

Carnegie Mellon University

Software Engineering Institute Page 20 of 36

-~ -

Complete set of artifacts of the system. The following are the types of artifacts that should
be collected:

- system architecture diagrams

- use case scenarios/diagrams

- misuse case scenarios/diagrams

- attack trees

- standardized templates and forms

In developing such artifacts, it is important to enlist the assistance of knowledgeable
engineers from the organization.

Verify the accuracy and completeness of all artifacts.

Carnegie Mellon University

Software Engineering Institute Page 21 of 36

-~

Identify the vulnerabilities and threats that face the system, the likelihood that the threats
will materialize as real attacks, and any potential consequences of an attack. Without a risk
assessment, organizations can be tempted to implement security requirements or
countermeasures without a logical rationale.

After the threats have been identified by the risk assessment method, they must be
classified according to likelihoods. Again, this will aid in prioritizing the security
requirements that are generated at a later stage. For each threat identified, a
corresponding security requirement can identify a quantifiable, verifiable response. For
instance, a requirement may describe speed of containment, cost of recovery, or limit to
the damage that can be done to the system’s functionality.

Requirements engineering team should facilitate the completion of a structured risk
assessment, likely performed by an external risk expert. Review the results of the risk

assessment and share them with stakeholders.

The results must be well documented and shared with the stakeholders.

Carnegie Mellon University

Software Engineering Institute Page 22 of 36

-~ -

The requirements engineering team must select an elicitation technique that is suitable for
the client organization and project. Multiple techniques will likely work for the same
project. The difficulty is in choosing a technique that can adapt to the number and
expertise of stakeholders, size and scope of the client project, and expertise of the
requirements engineering team. Previous experience has shown that the Accelerated
Requirements Method (ARM) has been successful in eliciting security requirements. The
organization can also use its existing requirements elicitation technique, although some
techniques are not ideal for eliciting security requirements.

Examples

- Structured/unstructured interviews

- Use/misuse cases [Jacobson 92]

- Accelerated Requirements Method [Wood 89, Hubbard 99]
- Soft Systems Methodology [Checkland 89]

- Issue-Based Information Systems [Kunz 70]

- Quality Function Deployment [QFD 05]

- Feature-Oriented Domain Analysis [Kang 90]

- Controlled Requirements Expression [Mullery 79]

- Critical Discourse Analysis [Schiffrin 94]

Carnegie Mellon University

Software Engineering Institute Page 23 of 36

-~ -

This is the heart of the SQUARE process. This step is simply a matter of executing the
technique that was previously selected.

Perhaps the largest mistake that the requirements engineering team can make in this step
is to elicit non-verifiable or vague, ambiguous requirements. Each requirement must be
stated in a manner that will allow relatively easy verification once the project has been
implemented. For instance, the requirement “The system shall improve the availability of
the existing customer service center” is impossible to measure objectively. Instead, the
requirements engineering team should encourage the production of requirements that are
clearly verifiable and, where appropriate, quantifiable. A better version of the previously
stated requirement would thus be “The system shall handle at least 300 simultaneous
connections to the customer service center.” A second mistake that the requirements
engineering team can make in this step is to elicit implementations or architectural
constraints instead of requirements. Requirements are concerned with what the system
should do, not how it should be done.

Face-to-face interaction with the stakeholders

Exit Criteria: An initial set of security requirements for the system has been elicited and
documented. It is not necessary that the set be considered final or completely correct.

Carnegie Mellon University

Software Engineering Institute Page 24 of 36

-~~~ -

The purpose of this step is to allow the requirements engineer and stakeholders to classify
the requirements as essential, non-essential, system level, software level, or as
architectural constraints.

Since the goal of SQUARE is to produce security requirements, the requirements
engineering team and stakeholders should avoid producing architectural constraints.
Architectural constraints are provided as a category here to serve as an outlet for
“requirements” that, upon categorization, are considered to be constraints. Ideally, such
anomalies would be identified and corrected in the previous steps of the process.

Carnegie Mellon University

Software Engineering Institute Page 25 of 36

-~ - et~ D RS R R R R i T il sl g

This slide shows an example of each of the different types of requirements that could
emerge during the implementation of the SQUARE process.

Software Level: Users cannot exceed their access privileges. Access control would typically
be handled in software.

System Level: System level (hardware and software) requirements are handled by the
system team to determine how the system will behave. An example for a system level
requirement as shown here is to have system level authentication measures in place so as
to prevent intrusion from potential hackers and other security threats from taking place.

Architectural Constraints: These are generally the restrictions determined by the customer
based on the business needs of the product. Architectural constraints consist of business
constraints and technical constraints that can influence the system. An example of an
architectural constraint is that the system should support a distributed network. This would
have a bearing on how the software would be designed and which technologies would be
used to develop and support the distributed environment.

Carnegie Mellon University

Software Engineering Institute Page 26 of 36

-~ -

In most cases, the client organization will be unable to implement all of the security
requirements due to lack of time, resources, or developing changes in the goals of the
project. Thus, the purpose of this step in the SQUARE process is to prioritize the security
requirements so that the stakeholders can choose which requirements to implement and in
what order. The results of Step 4, the risk assessment, and Step 7, categorization, are
crucial inputs to this step.

During prioritization, some of the requirements may be deemed to be entirely unfeasible to
implement. In such cases, the requirements engineering team has a choice: completely
dismiss the requirement from further consideration, or document the requirement as
“future work” and remove it from the working set of project requirements. This decision
should be made after consulting with the stakeholders.

Carnegie Mellon University

Software Engineering Institute Page 27 of 36

-~ -

The last step of the SQUARE process, requirements inspection, is one of the most
important elements in creating a set of accurate and verifiable security requirements.

Inspection can be done at varying levels of formality, from Fagan Inspections to peer
reviews [Fagan 86, Wiegers 02]. The goal of any inspection method, however, is to find any
defects in the requirements such as ambiguities, inconsistencies, or mistaken assumptions.

Stakeholders and the requirements engineering team should come to a consensus on the
validity of each security requirement. Verify that each requirement is verifiable, in scope,

within financial means, and feasible to implement.

Last chance to remove any requirements from the working set.

Carnegie Mellon University

Software Engineering Institute Page 28 of 36

T ol ittt

R R SR

SQUARE-Lite

~

ldatlll, mmmmata mndl mdadtiitis mm Al

| = P A . D RV

NN U N LU TTUAD MUUTT HTHMIVTTIVTILOU T VY VAUV Utuuy.

Describe what SQUARE-Lite is. The five steps are extracted from the nine steps of the
SQUARE process. SQUARE-Lite can be used by organizations that already have a
requirements engineering process, and just want to fit security requirements into it,
or by organizations that have not yet bought into the full SQUARE but still want

some of the benefits.

Carnegie Mellon University Page 29 of 36
Software Engineering Institute age 70

T mr e o - - wow

Note that when the SQUARE tool was developed, we were able to provide

automated support for traceability. However, this traceability, which would normally
extend to test cases, is limited to the 9 steps as implemented in the tool. Of course
traceability to test cases could be done manually, OR under the umbrella of another

tool.

Carnegie Mellon University
Software Engineering Institute

Page 30 of 36

N"J gt = it e e -7

Ve N NP SRS A ISR [N S S [177\

\"T) 4oOoToo 11Iono

\V)/ VMU VL I YU C I LD

Summarize the definition and the process.
Quickly go over the nine steps again.

Mention SQUARE-Lite as an alternative.

Talk about the next lecture — SQUARE in detail.

Carnegie Mellon University
Software Engineering Institute

Page 32 of 36

- — e RE wmmm m we rtEw W R

Use of the video is optional

Carnegie Mellon University

Software Engineering Institute Page 35 of 36

Carnegie Mellon University

Software Engineering Institute Page 1 of 7

L A ONALIAMIT MNL_ . NN

Collect or create a set of artifacts of the system. These artifacts will help the RE team better
understand the system and its different vulnerabilities.

Carnegie Mellon University

Software Engineering Institute Page 3 of 7

VIS ML S UMTT UU T I IS MM M I WA IS I T M v

Note that projects that have not considered security will not have misuse cases. In those
cases, the RE team will have to work with the stakeholders to develop the needed misuse
cases.

Carnegie Mellon University

Software Engineering Institute Page 5 of 7

vvvvvv [7 e~ e~ ~

Again, existence of attack trees implies that some attention has been paid to security.
Attack trees are a formal hierarchical way of describing a threat to a system based on the
type of attack. Goals are at the root and ways to achieve it are the leaves.

Explain the symbols used — and, or, scenario, and connector (no ‘and’s in the example)

Another type of artifact to collect (not on a slide): standardized templates and forms

Carnegie Mellon University

Software Engineering Institute Page 6 of 7

Carnegie Mellon University

Software Engineering Institute Page 1 of 32

N e o R m e P Er o mr e e wr e

Rt I e il A R D EER TR

AV MLV T W MM LI MMy v b v v
|) Ladn® § I~

In this example, the contractor is responsible for requirements identification. We have used
SQUARE as the underlying method, but depending on how the contract is written,
presumably the contractor could use another method to identify the security
requirements.

Carnegie Mellon University

Software Engineering Institute Page 12 of 32

If SQUARE is used throughout, Steps 3-9 are performed by the contractor. Otherwise the
contractor may use some other method for identifying security requirements. This
presumes that the contract award has been made and the contractor is on board.

Carnegie Mellon University

Software Engineering Institute Page 13 of 32

TN S T I TR

e e s

hAath thAa nartianc wiarl tanAathAr

The acquisition organization has the typical client role in this example and reviews the
resultant requirements, but does not necessarily specify which method to use in
developing the requirements. It’s important to note the client involvement in Steps 1, 2,
and 10. Note that if the acquisition organization works side by side with the contractor, the
separate review in Step 10 could be eliminated, as the client inputs would already be taken
into account in the earlier steps.

Carnegie Mellon University Page 14 of 32
Software Engineering Institute age 1%0

— — v wr m e - — T mr o - mE

If the acquisition organization specifies the requirements as part of the request for proposal (RFP),
then the original SQUARE for development should be used. Note that these may be relatively high-
level security requirements that result from this exercise, since the acquisition organization may be
developing the requirements in the absence of a broader system context. Also, the acquisition
organization will want to avoid identifying requirements at an implementation level of granularity

as that will overly constrain the contractor.

Carnegie Mellon University Page 17 of 32
Software Engineering Institute age 170

B e e, e s R RmmmE e e e w we B T WE we e wr we wmE e R

tor use

A e I A I LI A A g R A

PRI Y | A S S P R Y 1 | SO A

In acquisition of COTS software, the organization will have to develop a list of requirements
for the software and compare those requirements with the software packages under
consideration. Securityrequirements may need to be prioritized together with other
requirements. Compromises and tradeoffs mayneed to be made, and the organization may
have to figure out how to satisfy some security requirements outside the software itself—
for example with system level requirements, security policy, or physical security. The
requirements themselves are likely to be high-level requirements that map to security goals
rather than detailed requirements used in software development.

Carnegie Mellon University

Software Engineering Institute Page 20 of 32

Note that in acquiring COTS software, organizations often do minimal tradeoff analysis and
may not consider security requirements at all, even when they do such tradeoff analysis.
The acquiring organization will need to consider “must have” versus “nice to have” security
requirements. It is also the case that reviewing the security features of specific offerings
may help the acquiring organization to identify the security requirements that are
important to them.

Carnegie Mellon University Page 22 of 32
Software Engineering Institute agecco

- % o -~

Here is a complete process. In this case, we envision an iteration. Once the preliminary
security requirements are identified, the acquirer has to review available COTS products,
refine and finalize the security requirements and then do tradeoff analysis among the
available products. Then a final product spec can be written and a product selected.

Carnegie Mellon University Page 23 of 32
Software Engineering Institute agees0

e~~~ —-———p~ -

Table Templates
* We have provided some pre-formatted tables as guides for data display.

* Columns and Rows are independent and can be edited, added, deleted and formatted
to suit your individual needs.
* Table Templates are for guidance only.

Carnegie Mellon University Page 24 of 32
Software Engineering Institute age «* 0

Since acquisition of COTS products is often done by buyers without security expertise, one
future vision is to provide such buyers with a tool. Based on answers to a questionnaire on
the intended usage and environment of the product, a set of security requirements could
be provided to the buyer by the tool, and those requirements could be refined and merged
with other requirements to come up with a complete set of COTS selection criteria. This is
a future research idea that has not yet been implemented.

Carnegie Mellon University

Software Engineering Institute Page 26 of 32

Carnegie Mellon University

Software Engineering Institute Page 1 of 42

r~e~~—

For risk analysis, the following topics will be covered:

* Risk Concepts—Provides a brief overview of important risk management definitions
and ideas.

* Two Approaches for Analyzing Risk—Differentiates between mission risk (also
referred to as systemic risk) and event risk (also referred to as tactical risk)

* Security Engineering Risk Analysis (SERA) Concepts—Presents an detailed
walkthrough of the SERA method for analyzing security risks during system
acquisition and development

* Summary—Highlights the key points of the presentation

Carnegie Mellon University

Software Engineering Institute Page 3 of 42

Topic 1: Risk Concepts
This topic provides a brief overview of important risk management definitions and
ideas.

Carnegie Mellon University

Software Engineering Institute Page 4 of 42

* Function in the intended manner

environment

TAUVULUYLT TV HHIU MWDV I U T T T o

Software assurance is defined as the application of technologies and processes to
achieve a required level of confidence that software systems and services

* Function in the intended manner

* Are free from accidental or intentional vulnerabilities

* Provide security capabilities appropriate to the threat environment

* Recover from intrusions and failures

This topic examines risk-management concepts from a software-assurance
perspective. More specifically, this topic is focused on

» applying risk analysis during early life-cycle activates

* using risk analysis to specify security requirements

Carnegie Mellon University Page S of 42
Software Engineering Institute age» o

Dl camiilman tha fallawdmm anmditinmal

- Iihalllkkaad

« Choice —_

P (Loés)
Condition

The essence of risk, no matter what the domain, can be succinctly captured by the following
definition: Risk is the probability of suffering harm or loss.

The figure on the slide illustrates the three components of risk:

+ potential event — an act, occurrence, or happening that alters current conditions and leads to
aloss

« condition — the current set of circumstances that leads to or enables risk

» consequence — the loss that results when a potential event occurs; the loss is measured in
relation to the status quo (i.e., current state)

From the risk perspective, a condition is a passive element. It exposes an entity (e.g., project,
system) to the loss triggered by the occurrence of an event. However, by itself, a risk condition
will not cause an entity to suffer a loss or experience an adverse consequence; it makes the
entity vulnerable to the effects of an event.

Example of Risk: A project team is developing a software-reliant system for a customer. The
team has enough people with the right skills to perform its tasks and complete its next milestone
on time and within budget (status quo). However, the team does not have redundancy among
team members’ skills and abilities (condition). If the team loses people with certain key skills
(potential event), then it will not be able to complete its assigned tasks (consequence/loss). This
puts the next milestone in jeopardy, which is a loss when measured in relation to the status quo
(on track to achieve the next milestone). However, if none of the team members leaves or is
reassigned (i.e., the event does not occur), then the project should suffer no adverse
consequences. Here, the condition enables the event to produce an adverse consequence or
loss.

Carnegie Mellon University

Software Engineering Institute Page 6 of 42

Plan for risk control P N

Control ,nsk, S 7 \%‘ K) /))

uiv pidil W vuliipivuvig W

Risk management is a systematic approach for minimizing exposure to potential losses. It
provides a disciplined environment for

+ continuously assessing what could go wrong (i.e., assessing risks)

+ determining which risks to address (i.e., setting mitigation priorities)

* implementing actions to address high-priority risks and bring those risks within tolerance
The main goal or risk management is to provide decision makers

* with the information they need

* when they need it

* inthe right form

If decisions are not influenced by risk analysis activities, then risk analysis provides no
added value.

The figure on the slide illustrates the three core risk management activities:

» assess risk—transform the concerns people have into distinct, tangible risks that are
explicitly documented and analyzed

+ plan for controlling risk—determine an approach for addressing each risk; produce a plan
for implementing the approach

+ control risk—deal with each risk by implementing its defined control plan and tracking the
plan to completion

Carnegie Mellon University

Software Engineering Institute Page 7 of 42

Tew v sanniny oo,

One of the fundamental conditions of risk is uncertainty regarding its occurrence. A risk, by
definition, might or might not occur. In contrast, an issue (also referred to as a problem) is a
condition that directly produces a loss or adverse consequence. With an issue, no uncertainty
exists—the condition exists and is having a negative effect on performance.

Issues can also lead to (or contribute to) other risks by
» creating a circumstance that enables an event to trigger additional loss

» making an existing event more likely to occur
» aggravating the consequences of existing risks

People do not always find it easy to distinguish between an issue and the future risk posed by
that issue (if left uncorrected). This confusion can result in issues being documented in a risk
database and being treated like risks (and vice versa). Management must take great care to
ensure that their approaches for managing issues and risks are integrated appropriately and
understood by both management and staff.

Example of Issue/Problem: A project team is developing a software-reliant system for a
customer. The team does not have enough people with the right skills to perform the team’s
assigned tasks (condition). As a result, the team will not be able to complete all of its assigned
tasks before the next milestone (consequence/loss). No event is required for the loss to occur,
which distinguishes and issue/problem from a risk.

Carnegie Mellon University

Software Engineering Institute Page 8 of 42

status quo

1 IUUMUULY TIUVY TIUND VI 1O uUwY \

/ (Gain)

L J

Risk is focused on the potential for loss; it does not address the potential for gain. The concept
of opportunity is focused on the potential for a positive outcome. An opportunity is the probability
of realizing a gain. It thus enables an entity to improve its current situation relative to the status
quo.

Very often, an opportunity is focused on the gain that could be realized from an allocation or
reallocation of resources. It defines a set of circumstances that provides the potential for a
desired gain and often requires an investment or action to realize that gain (i.e., to take
advantage of the opportunity). Pursuit of an opportunity can produce new risks or issues, and it
can also change existing risks or issues.

Example of Opportunity: A project team is developing a software-reliant system for a customer.
Current status and quality reports indicate that the team is not on track to achieve its next
milestone (status quo). Another project in the company has just delivered its product to its
customer, and its team members will be made available to projects throughout the company
(condition). If the project manager brings additional personnel who have the right knowledge,
skills, and abilities onto the project (event), then the team might be able to increase its
productivity and be in position to meet its next milestone (consequence/gain). Here, the gain is
improved performance in relation to the status quo.

Carnegie Mellon University

Software Engineering Institute

Page 9 of 42

A strength is a condition that is driving an entity (e.g., project, system) toward a desired
outcome. With a strength, no uncertainty exists—the condition exists and is having a positive
effect on performance (i.e., driving an entity toward a desired outcome).

Example of Strength: A project team is developing a software-reliant system for a customer.
The team has enough people with the right skills to perform the team’s assigned tasks and has
enough redundancy in skills needed to meet the next milestone (condition). Its people are its
strength. As a result, the team is positioned to execute its tasks and activities effectively and
efficiently, putting the project in position to achieve its next milestone.

Carnegie Mellon University Page 10 of 42
Software Engineering Institute age 10

N

Condition v

Datantial \

I

The success or failure of an activity or endeavor is influenced by the range of circumstances
that are present. The figure on the slide depicts a causal chain of conditions and events that
affect whether an activity will achieve a desired set of objectives. This causal chain includes

» strengths that are driving the activity toward a successful outcome
* issues or problems that are driving the activity toward a failed outcome

» risks that could degrade performance and make a failed outcome more likely

» opportunities that could improve performance and make a successful

outcome more likely

Effective risk management requires navigating through this causal chain, assessing the current

potential for loss, and implementing strategies for minimizing the potential for loss.

Carnegie Mellon University
Software Engineering Institute

Page 11 of 42

Topic 2: Two Approaches for Analyzing Risk
This topic differentiates between mission risk (also referred to as systemic risk) and
event risk (also referred to as tactical risk).

Carnegie Mellon University

Software Engineering Institute Page 12 of 42

R R D 2 st R At

Two distinct risk analysis approaches can be used when evaluating systems:
» eventrisk analysis
* mission risk analysis

Each type is briefly explored in this topic.

Carnegie Mellon University

Software Engineering Institute Page 13 of 42

From the mission perspective, risk is defined as the probability of mission failure (i.e., not
achieving key objectives). Mission risk (also referred to as systemic risk) aggregates the effects
of multiple conditions and events on a system’s ability to achieve its mission.

Mission risk analysis provides a holistic view of the risk to an interactively complex,
socio-technical system. The first step in this type of risk analysis is to establish the
objectives that must be achieved. The objectives define the desired outcome, or
“picture of success,” for a system. Next, systemic factors that have a strong influence
on the outcome (i.e., whether or not the objectives will be achieved) are identified.
These systemic factors, called drivers, are important because they define a small set of
factors that can be used to assess a system’s performance and gauge whether it is on
track to achieve its key objectives. The drivers are then analyzed, which enables
decision makers to gauge the overall risk to the system’s mission.

A driver is a construct that is used to aggregate the effects of multiple conditions and
events in order to determine their combined influence on the mission’s key objectives.
Each driver directly influences whether or not objectives will be achieved. The
conditions and events within the causal chain are considered to be the root causes of
mission risk.

Carnegie Mellon University

Software Engineering Institute Page 14 of 42

Condition

Pantantial \ \
/ AN\

From the tactical perspective, risk is defined as the probability that an event will lead to a
negative consequence or loss. The figure on the slide shows the causal chain of conditions and
events that was introduced in the previous topic. As depicted in the figure, event risk (also
referred to as tactical risk) is focused on the risk that is triggered by an individual event.

The basic goal of event risk analysis is to evaluate a system’s components for potential
failures. Event risk analysis is based on the principle of system decomposition and
component analysis. The first step of this approach is to decompose a system into its
constituent components. The individual components are then prioritized, and a subset
of components is designated as being critical. Next, the risks to each critical
component are analyzed.

Event risk analysis enables stakeholders to (1) determine which components are most
critical to a system and (2) analyze ways in which those critical components might fail
(i.e., analyze the risk to critical components). Stakeholders can then implement
effective controls designed to mitigate those potential failures. Because of its focus on
preventing potential failures, event risk analysis has been applied extensively within
the discipline of systems engineering.

This presentation is focused on the Security Engineering Risk Analysis (SERA) method, which
incorporates the principles of event (or tactical) risk analysis.

Carnegie Mellon University

Software Engineering Institute Page 15 of 42

Topic 3: Security Engineering Risk Analysis (SERA) Concepts

This topic presents an detailed walkthrough of the SERA method for analyzing security
risks during system acquisition and development.

Carnegie Mellon University

Software Engineering Institute Page 16 of 42

TR T TSRS

FAMMIUOUT T MU Y W ULUI T WMV LIV G T DU LA T I L

During the acquisition and development of software-reliant systems, program personnel

normally focus on meeting functional requirements, often deferring security to later life-cycle
activities. Security features are usually addressed during system operation and sustainment

rather than being engineered into a system. As a result, many software-reliant systems are

deployed with significant residual security risk.

Carnegie Mellon University
Software Engineering Institute

Page 17 of 42

g Y T e

el A LD R I R

Operational security vulnerabilities generally have three main causes: (1) design weaknesses,
(2) implementation/coding vulnerabilities, and (3) system configuration errors. This presentation
is focused on design weaknesses. Early detection and remediation of design weaknesses will
reduce residual security risk when a system is deployed. Addressing design weaknesses as
soon as possible is especially important because these weaknesses are not corrected easily

after a system has been deployed.

For example, software maintenance organizations cannot simply issue a patch to correct a

design weakness. Remediation normally requires extensive redesign of the system, which is

costly and often proves to be impractical. As a result, software-reliant systems with design

weaknesses are often allowed to operate under a high degree of residual security risk, putting

their associated operational missions in jeopardy.

Carnegie Mellon University
Software Engineering Institute

Page 18 of 42

@ Temndtiamal A mmaliialia

Vo TN . W LT

— e~ it s s~ — =~ o~ saeg s

Performing a risk analysis early in the life cycle does not guarantee that security risks will be
handled effectively. Many traditional security risk-analysis methods cannot handle the inherent
complexity of modern cybersecurity attacks. These methods are based on a simple, linear view
of risk that assumes a single threat actor exploits a single vulnerability in a single system to

cause an adverse consequence. In reality, multiple actors exploit multiple vulnerabilities in

multiple systems as part of a complex chain of events. Traditional methods are often unable to

analyze the complex cybersecurity attacks effectively.

Carnegie Mellon University
Software Engineering Institute

Page 19 of 42

...... J e gt rrrag ot osreas s s g\ —— e sy

* Design

LU U W o vy o

Goal:

The Security Engineering Risk Analysis (SERA) method is designed for use during early life-
cycle activities (e.g., during requirements, architecture, and design). The SERA method
employs scenario-based risk analysis to handle the complex nature of cybersecurity risk. The
goal is to identify design weaknesses early in the life cycle and enable corrective action to be
taken. In this way, a subset of critical operational security risks can be mitigated long before a
system is deployed.

The SERA method can be

1. self-applied by the person or group that is responsible for acquiring and developing a
software-reliant system

2. conducted by external parties on behalf of the responsible person or group.

This module highlights the key concepts of the SERA method without addressing
specific implementation details.

Carnegie Mellon University

Software Engineering Institute Page 20 of 42

The SERA method comprises the following five tasks:

1. Establish operational context—The target of the assessment (e.g., the software application
or system that is being assessed) is determined initially. Next, the operational environment
for the target of the assessment is characterized to establish baseline operational
performance. Cybersecurity risks are analyzed in relation to this baseline.

2. ldentify risk—Cybersecurity concerns are transformed into distinct, tangible risk scenarios
that can be described and measured. The following elements are documented for each
cybersecurity risk: risk statement, threat, consequence, and enablers.

3. Analyze risk—Each risk is evaluated in relation to predefined criteria to determine its
probability, impact, and risk exposure.

4. Determine control approach—A strategy for controlling each risk is determined and
documented based on predefined criteria and current constraints (e.g., resources and
funding available for control activities). Control approaches for cybersecurity risks include
accept, transfer, avoid, and mitigate.

5. Develop control plan—A control plan is defined and documented for all cybersecurity risks
that are not accepted (i.e., risks that will be mitigated, transferred, or accepted). Risk
mitigation plans typically include actions from the following categories: (1) monitor and
respond, (2) protect, and (3) recover.

Carnegie Mellon University

Software Engineering Institute Page 21 of 42

[Y Y UL R T

Task 1 comprises two sub-tasks:
* Set scope of risk analysis. (Sub-Task 1.1)
* Define workflow/mission thread. (Sub-Task 1.2)

In Sub-Task 1.1, the target of the analysis is determined. The target is typically the
software application or system that is the focus of the SERA method. This task helps
to set the scope of the resulting risks analysis. In Sub-Task 1.2, the operational
workflow (or mission thread) for the target is established (or is projected to support
operations if the target is not yet deployed).

Each software application or system typically supports multiple operational workflows or
mission threads during operations. The goal is to (1) select which operational workflow or
mission thread will be included in the analysis and (2) document how the target of the analysis
supports the selected workflow or mission thread. This establishes a baseline of operational
performance for the target. The target is then analyzed cybersecurity risks in relation to this
baseline.

Carnegie Mellon University

Software Engineering Institute Page 22 of 42

fterets f e e e s st e -~ [P~ ~ s srees s e gy~

This slide highlights the key questions answered when performing Sub-Task 1.1.

The goals of this sub-task are(1) to establish which systems is the focus of the
security-risk analysis and (2) identify the workflow/mission thread that will provide the
operational context for the analysis.

Carnegie Mellon University

Software Engineering Institute Page 23 of 42

thread?

VAL 0t sl O _f N_a_ o __V_a'_ 4 Al _ 4_ . _4 _C£4al_ ____L__1_nN

This slide highlights the key questions answered when performing Sub-Task 1.2.

The goal of this sub-task is to document the steps that must be completed when
performing the selected workflow/mission thread.

The mission and objective(s) of a workflow/mission thread are used to define the
overarching “picture of success” for the workflow/mission thread.
Here, mission is defined as the fundamental purpose of the workflow/mission thread

that is being analyzed. An objective is defined as a tangible outcome or result that must be
achieved when pursuing a mission.

At a minimum, the following performance parameters should be documented for the
workflow/mission thread being analyzed:

* The sequence and timing of all steps needed to achieve the mission and objective(s),
including relevant interrelationships and dependencies among the activities

* Roles and responsibilities for completing each step
* Technologies (e.g., systems, applications, software, hardware) supporting each step

Two common ways for documenting a workflow/mission thread are diagramming techniques
(e.g., process flow, swim-lane diagram) and spreadsheets. The workflow /mission thread
should be documented using a format (e.g., diagram, spreadsheet) that is preferred by the
stakeholders of the analysis.

Carnegie Mellon University

Software Engineering Institute Page 24 of 42

THIVMIIY OV VIVY MIUVIMUIOD \(WIVIWT O

The Wireless Emergency Alerts (WEA) service is a collaborative partnership that includes the
cellular industry, Federal Communications Commission, Federal Emergency Management
Agency (FEMA), and U.S. Department of Homeland Security (DHS) Science and Technology
Directorate (S&T). The WEA capability disseminates emergency alerts to users of capable
mobile devices in an affected geographic area. However, like other cyber-enabled services,
WEA is subject to cyber threats that may prevent its use or damage the credibility of the service
it provides. Attackers may attempt to delay, destroy, or modify alerts, or even to insert false
alerts, actions that may pose a significant risk to the public.

WEA is a major component of the FEMA Integrated Public Alert and Warning System
(IPAWS). It enables federal, state, territorial, tribal, and local government officials to
send targeted text alerts to the public via commercial mobile service providers
(CMSPs). Customers of participating wireless carriers with WEA-capable mobile
devices will automatically receive alerts in the event of an emergency if they are
located in or travel to the affected geographic area.

Carnegie Mellon University

Software Engineering Institute Page 25 of 42

This slide shows a visual representation (i.e., a swimlane diagram) of the
workflow/mission thread for the end-to-end WEA alerting pipeline.

As shown in the figure, the end-to-end WEA alerting pipeline is a complex system of systems
comprising four major elements. The alert originators element consists of the people,
information, technology, and facilities that initiate and create an alert. The IPAWS-OPEN
element receives, validates, authenticates, and routes various types of alerts to the appropriate
disseminator, such as WEA, the Emergency Alert System (EAS), or the National Oceanic and
Atmospheric Administration. For WEA, IPAWS-OPEN and transmits WEA alerts to the
commercial mobile service providers (CMSPs) element. The CMSPs element then broadcasts
alerts to alert recipients, the WEA-capable mobile devices located in the targeted alert area.

Note: A system of systems is defined as a set or arrangement of interdependent systems that
are related or connected (i.e., networked) to provide a given capability.

Carnegie Mellon University

Software Engineering Institute Page 26 of 42

— s rrsre s s s =~

This slide shows a spreadsheet or table representation of the workflow/mission thread for the
Alert Originator potion of the end-to-end WEA pipeline.

More specifically, this slide and the next highlight the main steps needed to enter an

alert message into an Alert Originating System (AOS). In the steps highlighted on this slide,
an operator enters an alert message into the AOS, and the AOS converts the message to the
Common Alerting Protocol (CAP) compliant format.

Carnegie Mellon University

Software Engineering Institute Page 27 of 42

s s s s e

This slide continues the workflow/mission thread for the alert originator. The steps on
this slide show how the CAP-compliant message is signhed by two people and then
transmitted to the next part of the WEA pipeline (i.e., the IPAWS OPEN Gateway).

Carnegie Mellon University

Software Engineering Institute Page 28 of 42

Task 2 comprises four sub-tasks:
* |dentify threat. (Sub-Task 2.1)
» Establish consequence. (Sub-Task 2.2)
* Identify enablers. (Sub-Task 2.3)
* Document risk statement. (Sub-Task 2.4)

The overarching goal of Task 2 is to transform security concerns into distinct, tangible
risk scenarios that can be described and measured.

Carnegie Mellon University

Software Engineering Institute Page 29 of 42

Cybersecurity risk is a measure of the likelihood that a threat will exploit one or more
vulnerabilities to produce an adverse consequence, or loss, coupled with the
magnitude of the loss. The figure on the slide illustrates the three core components of
cybersecurity risk:

* Threat — a cyber-based act, occurrence, or event that exploits one or more
vulnerabilities and leads to an adverse consequence or loss

* Vulnerability — a weakness in an information system, system security procedures,
internal controls, or implementation that a threat could exploit to produce an
adverse consequence or loss; a current condition that leads to or enables
cybersecurity risk

* Consequence — the loss that results when a threat exploits one or more
vulnerabilities; the loss is measured in relation to the status quo (i.e., current
state)

The basic elements of risk were first introduced on slide 6. This slide takes those basic
elements and maps them to the cybersecurity context.

From the cybersecurity perspective, a vulnerability is the passive element of risk. It
exposes cyber technologies (e.g., software application, software-reliant system) to

threats and the losses that those threats can produce. However, by itself, a
vulnerability will not cause an entity to suffer a loss or experience an adverse
consequence; rather, the vulnerability makes the entity susceptible to the effects of a
threat .

Carnegie Mellon University

Software Engineering Institute Page 30 of 42

individiiale

IV 1IVL DU PMUOLU LU TTUV L.

This slide highlights the key questions answered when performing Sub-Task 2.1.
The goal of this sub-task is to identify threats that are causing concern.

The first component of threat, actor, is the source of the threat. It describes who or
what causes the threat. Examples of typical actors for cybersecurity threats include:

* Qutsider —a person with an outsider’s knowledge of the organization
* Insider — a person with an insider’s knowledge of the organization

* Malicious code — code that is intended to cause undesired effects, security
breaches, or damage to a system (e.g., scripts, viruses, worms, Trojan horses,
backdoors, and malicious active content).

Motive is the second component of a threat. It defines the reason why the actor
attempts to carry out the threat. Examples of motive include:

* Intentional or malicious — a person intentionally tries to cause the action
* Accidental — a person inadvertently causes the action to occur

In general, motive applies only to human actors. The final component of threat, action,
describes what the actor does to place the target at risk.

Carnegie Mellon University

Software Engineering Institute Page 32 of 42

—— st~ s e~

DU MU MUV LY U MUYV U UD TUV LT .

orgariZauori

A bl n Al o b LAt a2 A 8 D io . A8 2

This slide illustrates a threat to the AOS.

Carnegie Mellon University

Software Engineering Institute Page 33 of 42

This slide highlights the key questions answered when performing Sub-Task 2.2.

The goal of this sub-task is to establish the consequences that could be produced by
the threat.

To focus the identification of consequences, it is often advisable to think about specific
types of consequences, such as

* health and safety issues
 financial losses

* productivity losses

* loss of reputation

e other

Carnegie Mellon University

Software Engineering Institute Page 34 of 42

This slide illustrates the range of consequences for the threat shown on slide 35.

Consequences are generated by (1) examining the threat's impact on the workflow
and (2) analyzing the threat's impact on key stakeholders.

Carnegie Mellon University

Software Engineering Institute Page 35 of 42

R R N it At R

ULV UL Y U Dy OnUIil Uiy

» Other

Pt e e, e e e mE e R R F o e s s wEw

LIV T W v g e e

\~rygey t e

MLy IV) W MM MM Y A

it Bt

This slide highlights the key questions answered when performing Sub-Task 2.3.

The goal of this sub-task is to determine the conditions or circumstances that will
allow the risk (threat and consequence) to occur. These conditions or circumstances
are referred to collectively as enablers and can include vulnerabilities, occurrence of

related risks, actions that people might take, and dependencies on related

technologies and data.

Carnegie Mellon University
Software Engineering Institute

Page 36 of 42

—— e m—— e s~ o~

———rm —a g — — g

This slide illustrates the conditions and circumstances that enable the threat (slide 35)
and consequences (slide 37) to occur.

Carnegie Mellon University

Software Engineering Institute Page 37 of 42

This slide continues the list of enablers from slide 39.

Carnegie Mellon University

Software Engineering Institute Page 38 of 42

2@ Thalamathat (il Aamcniin it At Alvntitmmmtmiman ta vmaalicad /1 A

B - R I e - = s I g e e L

This slide highlights the key questions answered when performing Sub-Task 2.4.

The goal of this sub-task is to document a risk statement for each risk that is
identified. A risk statement is a succinct and specific description of a risk. Risk
statements typically describe (1) a circumstance with the potential to produce loss
(i.e., threat) and (2) the loss that will occur if that circumstance is realized (i.e.,
consequence). The if-then format is often used to capture a risk. The if part of the
statement describes the threat, while the then part summarizes the consequences.

Carnegie Mellon University Page 39 of 42
Software Engineering Institute age 370

—— s s s e ssrs s

This slide highlights the risk statement for the threat from slide 35 and the
consequences from slide 37.

Carnegie Mellon University

Software Engineering Institute Page 40 of 42

— s s s e s~

This slide illustrates the risk in a scenario format. Here, the three elements of the risk
(threat, enablers, consequences) are featured. A scenario-based expression of a risk
can be useful for communicating the risk to certain audiences.

Carnegie Mellon University

Software Engineering Institute Page 41 of 42

Carnegie Mellon University

Software Engineering Institute Page 1 of 32

e e~ s i rere—es o~

Sub-tasks:

+ Establish impact.

Task 3 comprises three sub-tasks:
* Establish probability. (Sub-Task 3.1)
* Establish impact. (Sub-Task 3.2)
* Determine risk exposure. (Sub-Task 3.3)

The overarching goal of Task 3 is to analyze each risk identified during Task 2 in
relation to predefined criteria.

Carnegie Mellon University

Software Engineering Institute Page 3 of 32

R i il R Lt Tl I T LT LS /

This slide highlights the key questions answered when performing Sub-Task 3.1.

The goal of this sub-task is to establish the probability for each risk that is identified.
Probability provides a measure of the likelihood that a risk will occur.

Carnegie Mellon University

Software Engineering Institute Page 4 of 32

Probability is evaluated in relation to a set of predefined criteria. These criteria provide
definitions for values of probability. Qualitative risk assessments can define different
levels of probability values, such as

* Three levels — likely, occasional, remote
* Five levels — frequent, likely, occasional, remote, rare

This slide shows criteria for a five levels of probability. Criteria for evaluating
probability must be tailored to the operational context in which risk is being evaluated.

Carnegie Mellon University Page S of 32
Software Engineering Institute age» o

—— s o~ ey

Rationale:

@ Tha Attmanlbimav lhan 4a lha Licaklh: caaadiioadad

This slide shows the probability value for the risk being analyzed. The rationale for
selecting the probability value is also documented.

Carnegie Mellon University

Software Engineering Institute Page 6 of 32

R I o T I I T I TR L R

This slide highlights the key questions answered when performing Sub-Task 3.2.

The goal of this sub-task is to establish the impact of each risk that is identified.

Impact provides a measure of the severity of a risk’s consequence if the risk were to
occur.

Carnegie Mellon University Page 7 of 32
Software Engineering Institute agero

e e e

Impact is evaluated in relation to a set of predefined criteria. These criteria provide
definitions for values of impact. Qualitative risk assessments can define different levels

of impact values, such as
* Three levels — high, medium, low
* Five levels — maximum, high, medium, low, minimum

This slide shows criteria for a five levels of impact. Criteria for evaluating impact must
be tailored to the operational context in which risk is being evaluated.

Carnegie Mellon University Page 8 of 32
Software Engineering Institute ageso

Rationale:

ML 1w MM v UL L v v v .

~ ~

- Thao il allic e mLWANMICA a ol e o

repair.

This slide shows the impact value for the risk being analyzed. (See slide 38 from

Module 16 for the risk statement.) The rationale for selecting the impact value is also
documented.

For the risk being analyzed, note that the impact value was judged to be between high
and maximum based on the criteria.

Carnegie Mellon University

Software Engineering Institute Page 9 of 32

R R i T R D I T I R at afd T

This slide highlights the key question answered when performing Sub-Task 3.3.

The goal of this sub-task is to establish the risk exposure for each risk that is
identified. Risk exposure provides a measure of the magnitude of a risk based on its
values of probability and impact.

Carnegie Mellon University Page 10 of 32
Software Engineering Institute age 10

R R a2 L SIS

Risk Exposure Matrix
Probability
Rare Remote Occasional

(1) (2) (3)

R e
e s |

Risk exposure is evaluated in relation to a set of predefined criteria. A matrix is used to
derive risk exposure from the individual values of probability and impact.. Qualitative

risk assessments can define different levels of risk exposure, such as

* Three levels — high, medium, low

* Five levels — maximum, high, medium, low, minimum

This slide shows a matrix for a five levels of risk exposure. Criteria for deriving risk

exposure must be tailored to the operational context in which risk is being evaluated.

Carnegie Mellon University
Software Engineering Institute

Page 11 of 32

—— s s s mmsa e~~~

Risk exposure is determined using the current values of probability and impact. For the
selected risk, the probability was determined to be rare and the impact was
determined to be between high and maximum.

As shown in the figure, risk exposure is the intersection between the probability and
impact values. As a result, the risk exposure for this example is low-medium.

Carnegie Mellon University Page 12 of 32
Software Engineering Institute age 120

outsotrcing)

oluuliiy.

arisk.

Sub-tasks:
* Prioritize risks.

T g R T IR g el

Task 4 comprises two sub-tasks:

* Prioritize risks. (Sub-Task 4.1)
» Select control approach. (Sub-Task 4.2)

The overarching goal of Task 4 is to decide how to address each risk. The strategy for
controlling a risk is based on the measures for the risk (i.e., probability, impact, and
risk exposure), which are established during the risk assessment. Decision-making

criteria (e.g., for prioritizing risks or deciding when to escalate risks within an
organization) may also be used to help determine the appropriate strategy for
controlling a risk. Common control approaches include:

* Accept — If arisk occurs, its consequences will be tolerated; no proactive action
to address the risk will be taken. When a risk is accepted, the rationale for doing

so is documented.

* Transfer — A risk is shifted to another party (e.g., through insurance or

outsourcing).

* Avoid — Activities are restructured to eliminate the possibility of a risk occurring.

* Mitigate — Actions are implemented in an attempt to reduce or contain a risk.

Carnegie Mellon University
Software Engineering Institute

Page 13 of 32

VT UIT 1HYIHITOL PHIVIILY TIONO.

F et f e\ et e w mrwe 2R R % T s tmrmmm s o wEwer

This slide highlights the key question answered when performing Sub-Task 4.1.

The goal of this sub-task is to prioritize risks based on their values of impact,

probability, and risk exposure.

The following guidelines can be used when prioritizing a list of risks:

* Use impact as the primary factor for prioritizing cybersecurity risks. Risks with
the largest impacts are deemed to be of highest priority.

* Use probability as the secondary factor for prioritizing cybersecurity risks.
Probability is used to prioritize risks that have equal impacts. Risks of equal

impact with the largest probabilities are considered to be the highest priority

risks.

The prioritization guidelines should be tailored to the decision-making needs of key

stakeholders.

Carnegie Mellon University
Software Engineering Institute

Page 14 of 32

et LR S I PR T IR TR SR g p i e i

This slide shows a spreadsheet that documents the results of risk prioritization. The
risk that has been analyzed in this presentation is Risk 1 from the spreadsheet. The
spreadsheet show how Risk1 ranks in relation to other risks that were identified.

Carnegie Mellon University

Software Engineering Institute Page 15 of 32

Pt 1 e et e e mr et T e e e w we we r ot wE e w

B ol atl

* Accept
* Transfer
* Avoid

L O A s L T D e R . L = S LN

This slide highlights the key questions answered when performing Sub-Task 4.2.

The goal of this sub-task is to select a control approach for each risk that has been
identified. Common control approaches include:

* Accept — If a risk occurs, its consequences will be tolerated; no proactive action
to address the risk will be taken. When a risk is accepted, the rationale for doing
so is documented.

* Transfer — A risk is shifted to another party (e.g., through insurance or
outsourcing).

* Avoid — Activities are restructured to eliminate the possibility of a risk occurring.

* Mitigate — Actions are implemented in an attempt to reduce or contain a risk.

Carnegie Mellon University Page 16 of 32
Software Engineering Institute age 160

Rationale:

RIS altttdd

IR RS ik b AN EETI RS PR

This slide shows the control approach for the risk that has been analyzed in this

presentation. The rationale for selecting the control approach is also documented.

Carnegie Mellon University
Software Engineering Institute

Page 17 of 32

This slide shows the risk spreadsheet from slide 15 with the control approach that was
selected for each risk.

Carnegie Mellon University

Software Engineering Institute Page 18 of 32

avoided).

- P aiidiaiss Adata

Task 5 comprises two sub-tasks:
* Review data. (Sub-Task 5.1)
» Establish control requirements. (Sub-Task 5.2)

The overarching goal of Task 5 is to develop a control plan for each risk for any
cybersecurity risk that is not accepted. A control plan defines a set of actions for
implementing the selected control approach. For risks that are being mitigated, their
plans can include actions from the following categories:

* Monitor and respond — Monitor the threat and take action when it is detected.

* Protect — Implement protection measures to reduce vulnerability to the threat
and to minimize any consequences that might occur.

* Recover — Recover from the risk if the consequences or losses are realized.

Carnegie Mellon University Page 19 of 32
Software Engineering Institute age 170

T o1mnTdat, THavici o, dliu LUIIDTYUTIIVTD 11VITT 1AadN £

Task 3

This slide highlights the data that are reviewed during Sub-Task 5.1.

The overarching goal of Task 5 is to develop a control plan for each risk for any
cybersecurity risk that will be mitigated, transferred, or avoided.

Carnegie Mellon University

Software Engineering Institute Page 20 of 32

This slide highlights the key questions answered when performing Sub-Task 5.2. The
questions on this slide are for risks that are being transferred or avoided.

Carnegie Mellon University

Software Engineering Institute Page 21 of 32

AL VM A M e nrnlignate wase raen

risk?

L L R A D R T | N PN T ST N e

This slide continues the list of key questions from the previous slide. The questions on
this slide are for risks that are being mitigated.

Carnegie Mellon University

Software Engineering Institute Page 22 of 32

This slide presents part 1 of the mitigation plan for the risk being analyzed (risk 1 from
the spreadsheet on slide 18). Mitigation actions for monitor and respond are shown.

Carnegie Mellon University

Software Engineering Institute Page 23 of 32

—r e srrsi g ersr— e s e e

Protect

storaqe.

pITvVIVUD aITi L.)

MIUUTUUITO Adllu VUIIUVID.

This slide presents part 2 of the mitigation plan for the risk being analyzed (risk 1 from
the spreadsheet on slide 18). Mitigation actions for protect are shown.

Carnegie Mellon University

Software Engineering Institute Page 24 of 32

This slide presents part 3 of the mitigation plan for the risk being analyzed (risk 1 from
the spreadsheet on slide 18). Additional mitigation actions for protect are shown.

Carnegie Mellon University

Software Engineering Institute Page 25 of 32

—r e ssrsigersi— e s

This slide presents part 4 of the mitigation plan for the risk being analyzed (risk 1 from
the spreadsheet on slide 18). Mitigation actions for recover are shown.

Carnegie Mellon University

Software Engineering Institute Page 26 of 32

* In the right form

MUy UiV IV VIMUD 11V UMD VU,

managea.

UVUIILD VIT A OyOuuUiill O AMIILY WU AVIITIUYUY 1ILO 1THODIVITL.

This slide summarizes some of the key points from this presentation.

Risk is defined as the probability of suffering harm or loss. Risk management is a
systematic approach for minimizing exposure to potential losses. It provides a disciplined
environment for
* continuously assessing what could go wrong (assess risk)
* determining which risks to address (plan for controlling risk)
* implementing actions to address high-priority risks and bring those risks within
tolerance (plan for controlling risk)

The main goal of any risk management process is to provide decision makers
with the information they need
* when they need it
* inthe right form
* |If decisions are not influenced by risk analysis activities, then risk analysis provides
no added value.

The success or failure of a mission is influenced by the range of circumstances that are
present. Risks, issues/problems, opportunities, and strengths are part of an interrelated
causal chain of conditions and events that must be managed. Effective risk management
requires navigating through this causal chain, assessing the current potential for loss, and
implementing strategies for minimizing the potential for loss.

The causal chain can be viewed from two distinct risk perspectives:
1. Mission risk aggregates the effects of multiple conditions and events on a system’s
ability to achieve its mission.
2. Eventrisk is the probability that an event will lead to a negative consequence or
loss.

Carnegie Mellon University
Software Engineering Institute

Page 28 of 32

* Requirements

* Design

IV W WL IV IV WMV Y DU MU LU UM DY DL T IUALTY I ST Y DD W

The SERA method is designed for use during early life-cycle activities (e.g., during
requirements, architecture, and design). It employs scenario-based risk analysis to
handle the complex nature of cybersecurity risk. The goal is to identify design
weaknesses early in the life cycle and enable corrective action to be taken. In this way,

a subset of critical operational security risks can be mitigated long before a system is
deployed.

Carnegie Mellon University Page 29 of 32
Software Engineering Institute age 70

This slide provides publications and resources for more information on risk
management.

Carnegie Mellon University

Software Engineering Institute Page 30 of 32

Proiect

This slide provides additional publications and resources.

Carnegie Mellon University

Software Engineering Institute Page 31 of 32

ASU site has resources, quizzes and exams that could be useful.

For more resources: https://softwareenterprise.asu.edu/curricular-modules

Carnegie Mellon University

Software Engineering Institute Page 1 of 40

e et bt Y SRR L))

MV UMCIMVIL MM SUPM VI L LMY eI W M Py

ana requires snip passage.

This is the standard descriptive elements from the GOF, which is also adopted by several
others.

Important note is it has it’s problems — the primary being the 1-to-1 problem-solution
enforcement. Can a problem have multiple solutions? Yes. Can a solution apply to
multiple problems? Less likely, but should we rule it out?

Motive the need to describe structure and behavior.

Carnegie Mellon University

Software Engineering Institute Page 9 of 40

— e i s srss— s =g~ e

DT I el r e Ll b I A 2t Ll et

[SRR [TS U SRR S | FUN U [U SR S [[SR

The instructor can point out that the getAbstractFactory method is a design pattern called
“Factory Method”.

Carnegie Mellon University

Software Engineering Institute Page 14 of 40

Make the point about documenting collaboration with a single structural view and multiple
behavioral views.

Carnegie Mellon University

Software Engineering Institute Page 15 of 40

et B Attt LT s

I e e

Notice the middle layer is a bunch of Abstract classes which only implement their particular
method. The bottom layer has the concrete classes that, though inheritance, “reuse” the
behaviors provided by the abstract classes.

This was the hot way to design in early days of OO — pre design patterns.

Carnegie Mellon University Page 20 of 40
Software Engineering Institute agesuo

The classes above are invoking the readBytes() method on each other. In the first two, a
client calls readBytes() form a file and it is either buffered or non-buffered. In the 3rd
example, the client is reading primitive data, readint(), readFloat() which causes the

DataStream to read bytes looking for those primitive values from the file. The last example
reads characters and Strings based on an encoding.

Carnegie Mellon University

Software Engineering Institute Page 24 of 40

ASU site has resources, quizzes and exams that could be useful.

For more resources: https://softwareenterprise.asu.edu/curricular-modules

Carnegie Mellon University

Software Engineering Institute Page 1 of 21

I I hs 2t TR T .

J, WPURRE S U5 IS U U N [S I S

[T N DAy § DIy | R < PRy R DY Iy (Y | e SOy PRy R SN

The workflow of a use case describes that which needs to be done by the system to provide
the value the served actor is looking for.

It consists of a sequence of activities and actions that together produce something for the
actor.

The workflow often consists of a basic flow and one or several alternative flows.

The structure of the workflow can be described graphically with the help of an activity
diagram.

The goal of this section is to introduce the students to the concept of an activity diagram.
You are not expected to teach them everything about this diagram at this time.

Activity diagrams can also be used to model the workings of an operation, an object,
business modeling, or anything that involves modeling the sequential steps in a
computational process.

This course focuses on using activity diagrams to model the flow of events in a use case

Carnegie Mellon University Page 11 of 21
Software Engineering Institute age 1o

An activity diagram may include the following elements:
Activity/Action represents the performance of a step within the workflow.
Transitions show the activity/action that follows.

Decisions evaluate conditions defined by guard conditions. These guard conditions
determine which of the alternative transitions will be made and, thus, which activities are
performed. You may also use the decision icon to show where the threads merge again.
Decisions and guard conditions allow you to show alternative threads in the workflow of a
use case.

Synchronization bars show parallel sub-flows. They allow you to show concurrent threads
in the workflow of a use case.

Walk the students through the activity diagram and explain each component (decision,
fork, join, and so on).

Carnegie Mellon University Page 12 of 21
Software Engineering Institute age 120

Activities describe graphically the flow of events of a use case. The flow of events consists
of a sequence of activities that together produce something of value for the actor. The flow
of events consists of a basic flow and one or several alternative flows.

* Actions: Represent the performance of an activity or step within the flow of events.
* Flow/Edge: Show what activity state follows after another.

* Decision/Merge Control which flow (of a set of alternative flows) follows once the
activity has been completed, based on a guard condition. Decisions are used to show
alternative threads in the flow of events of a use case.

* Forks/Joins: Show the beginnings and ends of parallel subflows. Forks and joins are
used to show concurrent threads in the flow of events of a use case.

Carnegie Mellon University Page 14 of 21
Software Engineering Institute age 1%0

Carnegie Mellon University

Software Engineering Institute Page 1 of 25

states

A state machine diagram is typically used to model the discrete stages of an object’s lifetime. They show
the sequences of state that an object goes through, the events that cause a transition from one state to
another, and the actions that result from the state change. State machine diagrams are closely related to
activity diagrams.

Each state represents a named condition during the life of an object in which it satisfies some condition
or waits for some event. A state machine diagram typically contains one start and multiple end states.
Transitions connect the various states on the diagram. Like activity diagrams, decisions, and
synchronizations may also appear on state machine diagrams.

State machines are used to model the dynamic behavior of a model element, and more specifically, the
event-driven aspects of the system's behavior. State machines are specifically used to define state-
dependent behavior, or behavior that varies depending on which state the model element is in. Model
elements whose behavior does not vary with the state, do not require state machines to describe their
behavior. These elements are typically passive classes whose primary responsibility is to manage data.

Introduce the concept of state machines.

A state machine diagram shows a state machine, emphasizing the flow of control from state to state.

Using the previous example, J. Clarke was an associate professor before she achieved tenure and became
a full Professor.

Another type of state machine that has been formalized in UML 2 is the Protocol State Machine. This is
used to express usage protocols by defining rules on the invocation of operations or exchange of
messages that a behavioral state machine or procedure may perform. This course does not cover these
diagrams

Carnegie Mellon University

Software Engineering Institute Page 6 of 25

— v = e~

The initial state indicates the default starting place for the state machine or sub-state. An
initial state is represented as a filled black circle.

The final state indicates the completion of the execution of the state machine or the
enclosing state. A final state is represented as a filled black circle surrounded by an unfilled
circle.

Initial and final states are actually pseudo-states. Neither may have the usual parts of a
normal state, except for a name.

Explain the need for start and final states.

There is exactly one initial (start) state and 0..* final (end) states.

To emphasize why an initial state is mandatory, ask the students to think about how they
would read a diagram without an initial state.

Note: Refer to the statement that “Only one initial state is permitted.” This is not always
true. When you have nested states, there can be an initial state within each nested state
AND the one outside of them

Carnegie Mellon University

Software Engineering Institute Page 11 of 25

L4 S T S I B N e I T

transition.
+ Example:

In the context of the state machine, an event can be defined as an occurrence of a stimulus
that can trigger a state transition. Events may include signals, calls, the passing of time, or a
change in state.

A signal or call may have parameters whose values are available to the transition, including
expressions for the guard conditions and action.

It is also possible to have a triggerless transition, represented by a transition with no event
trigger. These transitions, also called completion transitions, are triggered implicitly when
their source state has completed its action. They are implicitly triggered on the completion
of any internal ‘do activity’ in the state.

Explain events on a state machine

Carnegie Mellon University

Software Engineering Institute Page 12 of 25

IV MMM VS UTTT WML WM MM M LI W I I Iy Wt

| l

Transition Event Name

A Transition can be defined as:

A relationship between two states indicating that an object in the first state performs
certain actions and enters a second state when a specified event occurs and specified
conditions are satisfied. On such a change of state, the transition is said to “fire.” Until the
transition fires, the object is said to be in the “source” state. After it fires, it is said to be in
the “target” state.

You can show one or more state transitions from a state as long as each transition is
unique. Transitions originating from a state can not have the same event unless there are
conditions on the event.

The icon for a state transition is a line with an arrowhead pointing toward the destination
state.

Label each state transition with the name of at least one event that causes the state
transition. You do not have to use unique labels for state transitions because the same
event can cause a transition to many different states but it is recommended that they have
unique labels.

Explain transitions on a state machine.

Transitions are not bi-directional. If transitions need to run both ways between two states,
you can draw two different transitions going in opposite directions

Carnegie Mellon University

Software Engineering Institute Page 15 of 25

Carnegie Mellon University

Software Engineering Institute Page 1 of 21

Outline

List the learning objectives for this particular session. For example:
The student will learn

* the importance of work product inspections

* how to organize work product inspection meetings

* techniques for reviewing work products

e what data to collect to measure effectiveness

Make sure that if you use sub-bullets, points are in parallel with the main point (as shown
in the example above).

Carnegie Mellon University

Software Engineering Institute Page 3 of 21

TAMIVYY MLV IV L WU IMMITL WS ILIT ALY YY1

I

Summarize the main points of the talk. For example:

In this session we
* built a case for why work product inspections are important
* presented techniques for reviewing work products

* presented examples of how to organize inspection meetings

* discussed the type of data to collect from work product inspections and how to

analyze it
Make sure that the summary is aligned with the lesson objectives.

Again, make sure sub-bullets are parallel.

Carnegie Mellon University
Software Engineering Institute

Page 18 of 21

Carnegie Mellon University

Software Engineering Institute Page 1 of 40

P~~~

Testing

Instructor note: Some of the content of this module may be too advanced for your
students. Use your professional judgment in deciding what to present to them, and what
you can actually expect them to absorb.

Carnegie Mellon University

Software Engineering Institute Page 3 of 40

This is the point where my colleagues normally start talking about big and terrible
incidents, those that make the headlines news like: the Therac-25, a radiation therapy
machine which in the 80s killed 2 and injured 4 people (The problem was traced to a
seldom used sequence of key strokes — which had been masked in previous versions of the
software by the presence of a hardware interlock). Or the Ariane 5, a rocket, that blew up
in 1996 (integer overflow, a number too big to be represented by the data type selected
turns from positive to negative) or the 1998 Mars Climate Observer destruction where a
mistake in the use of English vs. Metrics units resulted in the destruction of the spacecraft.

Thank goodness, these disasters do not happen every day, but if we look around there is
plenty of bad software. These are just three examples of software failures.

The National Institute of Standards and Technologies in a 2002 reports estimates the
national annual costs of an inadequate infrastructure for software testing in a range from
$22.2 to $59.5 billion. Over half of these costs are borne by software users in the form of
error avoidance and mitigation activities. The remaining costs are borne by software
developers and reflect the additional testing resources that are consumed due to
inadequate testing tools and methods.

Carnegie Mellon University

Software Engineering Institute Page 5 of 40

So, in this talk we are going to look at software verification which is the process by which
we try to eliminate bugs before a software system is released to its users and by which we
gain confidence that the system works. That is: we want to be reasonably sure the software
does what it is supposed to do and doesn’t do what is not supposed to.

Notice that | said justify confidence and not prove, this is because in all but the most trivial

systems we can not exhaustively test a system because of the sheer numbers of test cases
required

Carnegie Mellon University Page & of 40
Software Engineering Institute ageoo

The quality of a software system can be defined in terms of how well it satisfies a number of quality

—1IvIGI I\l_y

B et

e — o ——

wTiHiviiouauvli

characteristics. Usually these quality characteristics fall in one of six categories. The International Standards

Organization (I1SO) in its standard 1SO-9126 defined 6 quality characteristics:

Efficiency How efficient is the software?

Functionality: Does the software provide the required functions

Suitability, accuracy, interoperability, security, functionality compliance
Reliability How reliable is the software?

Maturity, fault tolerance, recoverability, reliability compliance

Usability Is the software easy to use?
Understandability, learnability, operability, attractiveness, usability compliance

Time behavior, resource utilization, efficiency compliance

Maintainability How easy is it to modify it?

Analyzability, changeability, testability, maintainability compliance

Portability How easy is it to transfer the software to another environment?

Replace ability, environment? Adaptability, install ability, portability compliance

To verify these quality characteristics we will use diverse techniques, each which is categorized according to
its nature

Inspection
Testing
Analysis

Demonstration

Carnegie Mellon University
Software Engineering Institute

Page 7 of 40

Tt grrag SRy e e e e s— e sie s ae e~ e e

Uses

Examples

2011 (c) Eduardo Miranda

The examination by people other than the producer, of human oriented development
artifacts, that is we are going to look at documents or at the source code of an application
with the aim of meeting contractual obligations, finding non-compliance with standards or
finding defects based on the premise that individuals might be blind to some of the trouble
spots in their own work and in consequence it is beneficial to have someone else look at it.

In the case of Vista, for example, two or three people could look at a clinical reminder and
discuss its intent

Carnegie Mellon University Page 8 of 40
Software Engineering Institute ageso

T TR R b s A L T I i~

INCOSE

expected

Uses

Examples

When we test something our purpose is to make it fail. As a matter of fact, a good test case
is one that uncovers a fault.

Carnegie Mellon University

Software Engineering Institute Page 9 of 40

T grrag A Sienirsg e i e e s— i si— s s s g~

A~~~

Calbhiimcn meandibtinmas

CULIUIUVID

Examples

2011 (c) Eduardo Miranda

Analysis involves the creation of a model of the system and the verification using the model
instead of the actual software. The advantage of analysis is that by omitting all the details
that are not relevant to a specific verification it is possible to formally prove (or disprove)
that a software exhibits (or not) a certain property.

Carnegie Mellon University

Software Engineering Institute Page 10 of 40

INCOSE

Practitioner
Uses

Examples

Demonstration is more positive than testing. Here we are trying to show somebody that
what we did indeed does what is supposed to do.

Carnegie Mellon University

Software Engineering Institute Page 11 of 40

Testing

Of these four techniques | will concentrate in the two that | believe are more relevant to
the audience.

Carnegie Mellon University

Software Engineering Institute Page 12 of 40

eIy T A 1w A 1. AT g w et IInAL o AL wam 1. 1 rranniaas s

B L

The benefits of inspecting software products have long been established, not only with
regards to improving the quality of the artifacts but also as a vehicle for learning and

communicating within the development team. Still despite its benefits inspections are not
as widely practice as they should be.

In my experience the reason why they are not more widespread is because they are like
diets: they are not all that much fun and they require a lot of discipline.

Carnegie Mellon University Page 14 of 40
Software Engineering Institute age 1%0

R R TEEEES B TR L i T NI i Rt

There are different types of inspections: They differ in their purpose, the artifacts
inspected, the degree of formality (steps to follow and roles) required by the process, the
existence (or not) of prescribed checklists

Carnegie Mellon University

Software Engineering Institute Page 15 of 40

R T I e R A Dl A e L I D S AT
L e PR R e P R e e el A A A

* Exclude:
- Direct management

5. MAnIUI, DUILWAIT VETIILAUUIT AU Valuauull A F1auuuuiict > DUuS, 1991

So what are the best practices in terms of inspections. Prevent people from showing off or
settling scores by attacking the work of others

Carnegie Mellon University

Software Engineering Institute Page 16 of 40

While inspecting consisted in reading design documentation and source code, testing
requires the execution of the software under controlled conditions.

Carnegie Mellon University

Software Engineering Institute Page 18 of 40

e ettt ittt

Functions. See that each function does what it’s supposed to do and not what it isn’t
supposed to do
* Look for any data processed by the product. Look at outputs as well as inputs
* Decide which particular data to test with. Consider things like boundary values,
typical values, convenient values, and invalid values
* Consider combinations of data worth testing together
Scenarios. Test to a compelling story. Do one thing after another
* Define test procedures or high level cases that incorporate multiple activities
connected end-to-end
* Don't reset the system between tests.
* Vary timing and ordering of events
Efficiency. Does the system provide appropriate performance, relative to the amount of
resources used, under stated conditions
* Performance testing. The testing to evaluate system’s response time, throughput and
resource utilization
* Load testing. Process of exercising the system by feeding it the largest specified task
or workload
» Stress testing. Trying to break the system with the purpose of assuring that the
system fails and recovers gracefully. This testing is performed by overwhelming the
system’s resources or by taking them away from it beyond the specified conditions
* Robustness Testing. Imagine calamities. The possibilities are endless. How will the
system react to them?

Carnegie Mellon University

Software Engineering Institute Page 19 of 40

Software is developed in units that are later assembled. Accordingly we can distinguish different levels of testing.

¢ Unit Testing - A unit is the "smallest" piece of software that a developer creates. It is typically the work of one programmer
and is stored in a single file. Different programming languages have different units: In C++ and Java the unit is the class; in C
the unit is the function; in less structured languages like Basic and COBOL the unit may be the entire program.

* Integration Testing - In integration we assemble units together into subsystems and finally into systems. It is possible for
units to function perfectly in isolation but to fail when integrated. For example because they share an area of the computer
memory or because the order of invocation of the different methods is not the one anticipated by the different
programmers or because there is a mismatch in the data types. Etc.

e System Testing - A system consists of all of the software (and possibly hardware, user manuals, training materials, etc.) that
make up the product delivered to the customer. System testing focuses on defects that arise at this highest level of
integration. Typically system testing includes many types of testing: functionality, usability, security, internationalization
and localization, reliability and availability, capacity, performance, backup and recovery, portability, and many more.

* Acceptance Testing - Acceptance testing is defined as that testing, which when completed successfully, will result in the
customer accepting the software and giving us their money. From the customer's point of view, they would generally like
the most exhaustive acceptance testing possible (equivalent to the level of system testing). From the vendor's point of
view, we would generally like the minimum level of testing possible that would result in money changing hands.

Typical strategic questions that should be addressed before acceptance testing are: Who defines the level of the acceptance
testing? Who creates the test scripts? Who executes the tests? What is the pass/fail criteria for the acceptance test? When and
how do we get paid?

The purpose of regression testing is to verify that the introduction of new functionality or fixes to the software does not affect
things that should not be affected. It consists of the execution of the software, using previously passed test cases, while looking
for differences in the results.

2. Re-executes some or all existing test cases to exercise code that was tested in a previous release or previous test cycle.
3. Performed when previously tested code has been re-linked such as when:

* Ported to a new operating system

* Afix has been made to a specific part of the code.

* Afix has been made to another part of the code, but this module had to be re-linked because the fix was in an underlying
library that this module also uses.

4. Chances are defects may not be fixed correctly or the code change may introduce new defects. Studies show that:

* The probability of changing the program correctly on the first try is only 50% if the change involves 10 or fewer lines of
code.

* The probability of changing the program correctly on the first try is only 20% if the change involves around 50 lines of
code.

Not all systems are amenable to using these levels. These levels assume that there is a significant period of time between
developing units and integrating them into subsystems and then into systems. In Web development it is often possible to go
from concept to code to production in a matter of hours. In that case, the unit-integration-system levels don't make much sense.
Many Web testers use an alternate set of

levels:
¢ Code quality
¢ Functionality

e Usability
¢ Performance
e Security

Carnegie Mellon University

Software Engineering Institute Page 20 of 40

L Dbt

LTI e sy

~

- P A bl o

* Ad-hoc

All testing methods belong to one of the following categories

Carnegie Mellon University
Software Engineering Institute

Page 21 of 40

e s~y

A I I N it RP LIRS B A R A B R R

To keep down our testing costs, we don’t want to write several test cases that test the
same aspect of our program. A good test case uncovers a different class of errors (e.g.,
incorrect processing of all character data). Equivalence partitioning is a strategy that can be
used to reduce the number of test cases that need to be developed. Equivalence
partitioning divides the input domain of a program into classes. For each of these
equivalence classes, it is hypothesized that the set of data must be treated the same by the
module under test and should then produce likely answers, if it does not then the test fails.

Carnegie Mellon University Page 22 of 40
Software Engineering Institute agecco

TV UyoLtuiiiUuy VUi iauwing

ol cemlicmm Ao e | R N S

Random testing is a technique which systematically explores the input space of the
software under testing. This use of the term random is very different from other disciplines
where random testing means selecting a few cases just by “chance”. To be effective and
efficient random testing relies on the automatic generation of test inputs. The problem
with random testing is how to verify that the results are those expected. This is known as
the “oracle problem”.

The solutions to the oracle problem fall into three categories: the use of a proxy to produce
the correct results against the values produced by the new application will be checked. The
proxy could be an existing system or a simple computational form. The second category is
based on the recognition of patterns. Pattern recognition can take the form of curve fitting
algorithms followed by a study of discontinuities in the output of the application or it can
be in the form of assertions where a relation between variables is a specified and a
violation of the assertion denotes a failure of the software. The breaking of a pattern can
also be detected by visual inspection of a summary input like in the example shown. A third
category consist in analyzing the states which result after the execution of the software
with a certain data. A common example for this is fuzz testing in which the expected output
from the test are that after processing the data the software exits normally. The software
raises an exception indication an abnormal condition or the software crashes revealing an
abnormal situation that it was not programmed to handle.

Carnegie Mellon University

Software Engineering Institute Page 23 of 40

—— = g\ e~] g

Useful for:

Limitations

Important as a complement to other forms of testing

Carnegie Mellon University

Software Engineering Institute Page 24 of 40

Faults of omission, as its name indicates, are things that were specified or at least expected
and were left out.

Carnegie Mellon University

Software Engineering Institute Page 26 of 40

e bR TR g R P I e T

Faults can classified into computation faults and domain faults.

(1) Computation faults: The function containing an implementation fault is applied to the
right data

(2) Domain faults: The correct implementation of a function is applied to the wrong data

Carnegie Mellon University

Software Engineering Institute Page 27 of 40

Let’s say we test the different partitions with a single value per partition. The test suite will
uncover the computation fault but miss the boundary shift.

Carnegie Mellon University

Software Engineering Institute Page 28 of 40

BVA will find both the computation and the domain fault at the expense of a greater
number of test cases.

Carnegie Mellon University

Software Engineering Institute Page 29 of 40

e g gt~ s e

Imagine a program with have the three faults shown. In the first case any Account Balance
< 0 will trigger the fault. The second fault will be only triggered if we execute the program
with data where an individual has a negative balance and has Overdraft Protection. If this
condition is not met during testing the fault will remain latent until the day the software is
deployed and a customer that signed for Overdraft Protection gets withdraws more money
than he deposits. In the last case three conditions need to be met for the failure to be

triggered

Carnegie Mellon University Page 30 of 40
Software Engineering Institute age >t o

In this case we have designed the test cases in such a way that all values of each variable
are covered at least once. To do this we need two test cases for example: one whose values
are Account Balance >=0, Overdraft Protection = Yes and Check Amount >=100 and another
with Account Balance < 0, Overdraft Protection = No and Check Amount <100

These test cases will cover all equivalent values of all the variables involved but will find
only one of the faults

Carnegie Mellon University Page 31 of 40
Software Engineering Institute age .0

We all have been taught that exhaustive testing is impossible, but is it necessary?

Carnegie Mellon University

Software Engineering Institute Page 34 of 40

INALA T IALULAl TUUHEAE U IVIVUNITU UUTIUILUTESUIDIVEH WUVETays, £UU 1

Miller, George A., 1956 — “The Magical Number Seven, Plus or Minus Two, Some Limits on
Our Capacity for Processing Information”

Carnegie Mellon University

Software Engineering Institute Page 35 of 40

VWALt i nis Mmoo mbi i mbiimal Ll N\

- Pamaaaa T . AN L 2 Ll ANl Jd_£._28% o e it af o 2o

Testing techniques are also classified according to the source of information from which the
test cases are derived.

All systematic testing techniques (except random testing), are based on partitioning the
input domain of the SUT. These techniques aim to produce partitions that exercise a
particular feature of the SUT, such as branches in the code, or boundary values as described
by the SUT specification. These techniques are based, in part, on the assumption that all
inputs in a partition will be treated similarly by the SUT. That is, if one input value from a
partition causes a SUT to fail, then it is assumed that the remaining inputs from the
partition will also cause the SUT to fail, and vice versa for inputs that do not cause failure. If
this is the case, then the partitions are considered to be homogeneous, or truly revealing.
White box testing establish equivalence vis a vis the control or dataflow structure of the
software. Notice that the criteria for designing test cases correspond to the adequacy
criteria. That is the criteria can be used to measure the extent of testing as well as to
generate test cases that satisfy it.

Carnegie Mellon University

Software Engineering Institute Page 36 of 40

e e st f e e s e — st g e s =~

To stimulate the program we need inputs, how do we choose them? If we base our
selection we might miss unspecified behaviors implemented in the program. If we select

values based on the structure we might miss required behaviors that were not
implemented.

If the condition is not satisfied we will analyze the code to see what values must be
provided as input to force the execution along the desired path

Carnegie Mellon University Page 38 of 40
Software Engineering Institute age 3e o0

Carnegie Mellon University

Software Engineering Institute Page 1 of 41

P~~~

Testing Methods

Rt A

Instructor note: This material is sophisticated and may be beyond what is expected for your
students. You may have some advanced students who would appreciate it as an extra
lecture or optional assignment.

Carnegie Mellon University

Software Engineering Institute Page 3 of 41

The idea is simple. You look at the problem and conclude that certain values ought to be
treated the same by the software and as a result:

* If one value catches a bug, the others in the same category probably will too.

* If one test doesn't catch a bug, the others probably won't either.

Carnegie Mellon University

Software Engineering Institute Page 4 of 41

NAfinAaAd hir Criiimaar

-
~tiAn

- M manmis A hAatlh bant mmmmaA AA s

Many people says is sufficient to test just one value in a class. | prefer to test at least two
values (if possible) to have a warmer feeling that the hypothesis might hold. You cannot be
sure that it holds for all values without testing for them, but if you test for two and the test

cases do not pass | will know that my hypothesis was not correct to start with.

Carnegie Mellon University
Software Engineering Institute

Page 5 of 41

From experience we know that faults tend to accumulate at the borders of an interval, this
are typically called “off by one” faults. For example a programmer used a “less than
condition” when he should have used a “less or equal” or when it should have started
counting something from zero and instead started from one.

Carnegie Mellon University Page & of 41
Software Engineering Institute ageoo

£ iaim varmm $nA A tAant Al

30,000 years of continued work assuming one minute per test

In general, the number of tests required for t-way combinatorial testing of n parameters
with v values apiece is proportional to vt log n. So, the number of tests needed for four-way
testing is several times that required for three-way testing.

On the other hand, testing 30 parameters requires a modest increase over the number of
tests needed for 20. For example, a system with 20 variables, five values each, requires 444
tests for three-way coverage but 3,019 tests for four-way coverage with IPOG. A much
smaller penalty is incurred for covering more variables:
* increasing the number of variables to 30 requires 3,749 tests for four-way coverage, a
24 percent increase.

Carnegie Mellon University Page 8 of 41
Software Engineering Institute ageso

ettt E LI LI R T I Y

The use of a tool is necessary to generate test cases.

Carnegie Mellon University

Software Engineering Institute Page 11 of 41

— —rrr i ierie— i s e e g o~ e~~~

A Pl aba bant At

~. TAUIT GHIU VUTI Y ToouiLo.

Test for equivalence classes first. If using BVA, test only for boundary values - do not include
the nominal case as we will test for this in the next step.

Choose the strength of the interaction and create a test description containing only one
nominal value for each equivalence class.

Generate test suite (automated step).
Complete test suite (manual or automated depending on the tool used).
Add missing “special cases”.

Remove impossible combinations by replacing the conflicting values with feasible ones not
to affect the coverage required.

Unless required by the problem do not:
* Mix negative and positive testing
* Do not test interactions among invalid values

Carnegie Mellon University

Software Engineering Institute Page 12 of 41

The elements of a decision table are conditions, actions and rules. Each combination of
conditions that result in a particular output or action is called a rule. Asterisks, dashes or
white spaces in a rule are use to denote “Don’t matter values”.

Carnegie Mellon University

Software Engineering Institute Page 13 of 41

. B T
Nttt DAvreanAantivA

We partition the input domain according to the expected results (actions on the table) and
then we proceed as in the case of equivalence classes, generating at least one test case for
each rule in the table, and one test case for each “don’t matter conditions” value to verify
that they really don’t matter.

Carnegie Mellon University

Software Engineering Institute Page 14 of 41

This approach ensures that the effect of each condition is tested relative to the other conditions without
requiring analysis of the logic of each decision (that is, if changing the value of a single condition causes
the value of the decision outcome to change, then the single condition is assumed to be the cause for
the change—no further analysis is needed).

Number of test cases growths linearly with number of conditions (n+1) instead of 2n required by
multiple condition coverage.

Disadvantage is very laborious.

1) Choose a condition, find a pair of rows that differ in the decision outcome and in the value of the
chosen condition alone (all the rest must remain the same)

Showing that a condition independently affects a decision’s outcome by varying just that condition while
holding all others fixed is commonly referred to as the unique-cause approach to MC/DC. This approach
ensures that the effect of each condition is tested relative to the other conditions without requiring
analysis of the logic of each decision (that is, if changing the value of a single condition causes the value
of the decision outcome to change, then the single condition is assumed to be the cause for the
change—no further analysis is needed).

Historically, the unique-cause approach has often been the only acceptable means of showing the
independent effect of a condition. The unique-cause approach cannot be applied, however, to decisions
where there are repeated or strongly coupled conditions; e.g., (A and B) or (A and C).

The unique-cause approach commonly is taught by presenting a truth table for an expression; for
example, the decision Z:= (A or B) and (C or D) shown in Table 3. In the truth table approach, test cases
that provide MC/DC are selected by identifying pairs of rows where only one condition and the decision

outcome change values between the two rows. In Table 3, the columns shaded in gray indicate the
independence pairs for each condition. For example, test case 2 coupled with test case 10 together
demonstrate the independent effect of A, because A is the only condition that has changed value along
with the change in value of the outcome Z. Although the truth table is a simple approach to showing
the independent effect of a condition, the truth table approach suffers from a number of limitations: (a)
the truth table is unwieldy for large logical expressions; and, for a logical expression with n inputs, only
n+1 of the 2n rows are useful; (b) the truth table addresses only one logical expression at a time; and, (c)
the truth table does not connect the inputs and outputs from the requirements-based tests with the
source code structure.

Carnegie Mellon University

Software Engineering Institute Page 19 of 41

Charters
A Ml Al s il il o b] s ALl M Ko s 1~

Debriefing

| o N T [[U I [Y

Unbounded exploratory testing tends to result in a waste of resources due to overlap
(somebody testing something that was already tested), gaps (nobody checking something)
and lack of visibility (how much is left, what has been accomplished). Exploratory Session-
based testing is a method for managing testing effort by compartmentalizing testing
activity into time-boxed called sessions.

A session is governed by a charter, or a mission statement consisting of a paragraph or two
to guide the tester on what to do in the session. It suggests what to be on the lookout for,
what tools to use, and what areas of the product to cover.

Carnegie Mellon University Page 20 of 41
Software Engineering Institute agesuo

Earlier in this presentation | asked the question: “How many test cases do we need to be
reasonably reassured that we have done a comprehensive testing job?” This is a very
difficult question to answer in the positive.

Carnegie Mellon University

Software Engineering Institute Page 22 of 41

tre e ersresnsi— s s s~ g e e

. e VUV MLV UL UtALC T I LD

- - . - - Mm g o1

12. endif

This program asks for the name, title, gender and marital status of a person and produces
as output the appropriate salutation. The program contains a deliberate fault in its logic.
The salutation for every man without a title will be “Mrs”.

Carnegie Mellon University

Software Engineering Institute Page 23 of 41

P s srre e emssrsesie— s s s~ g e

- e Tact raca 1

~. moygetaer —— v v

TAant NAan~nN

12. endif
13. endif

Execute the program with the following test cases.

Carnegie Mellon University

Software Engineering Institute Page 24 of 41

Z=7Z+1

Z=72+2

T

Z=7Z+1

Z=72+2

« A=True, B =True

- —

TApUDIIIY UIT 1QulL

Carnegie Mellon University
Software Engineering Institute

Page 26 of 41

et r R st LR I L gl g g R

asodullic.

Decision table test design is a very useful technique.

Carnegie Mellon University

Software Engineering Institute Page 31 of 41

Decision table test design is a very useful technique.

Carnegie Mellon University

Software Engineering Institute Page 32 of 41

Hints

¢ In this examnle-

Decision table test design is a very useful technique.

Carnegie Mellon University

Software Engineering Institute Page 33 of 41

Combination

VAIIy MM U M IV M IS MLV VSIS (M TS MW IV gy Sy SV

Decision table test design is a very useful technique.

Carnegie Mellon University

Software Engineering Institute Page 34 of 41

I - T T T S T - T s T s N

Hint

Decision table test design is a very useful technique.

Carnegie Mellon University

Software Engineering Institute Page 35 of 41

ML Me ey

Decision table test design is a very useful technique.

Carnegie Mellon University
Software Engineering Institute

Page 36 of 41

—— st s~ s et s

This approach ensures that the effect of each condition is tested relative to the other conditions without requiring
analysis of the logic of each decision (that is, if changing the value of a single condition causes the value of the
decision outcome to change, then the single condition is assumed to be the cause for the change—no further
analysis is needed).

Number of test cases grows linearly with number of conditions (n+1) instead of 2n required by multiple condition
coverage.

Disadvantage is that it is very laborious

1) Choose a condition, find a pair of rows that differ in the decision outcome and in the value of the chosen
condition alone (all the rest must remain the same)

Showing that a condition independently affects a decision’s outcome by varying just that condition while holding
all others fixed is commonly referred to as the unique-cause approach to MC/DC. This approach ensures that the
effect of each condition is tested relative to the other conditions without requiring analysis of the logic of each
decision (that is, if changing the value of a single condition causes the value of the decision outcome to change,
then the single condition is assumed to be the cause for the change—no further analysis is needed).

Historically, the unique-cause approach has often been the only acceptable means of showing the independent
effect of a condition. The unique-cause approach cannot be applied, however, to decisions where there are
repeated or strongly coupled conditions; e.g., (A and B) or (A and C).

The unique-cause approach commonly is taught by presenting a truth table for an expression; for example, the
decision Z:= (A or B) and (C or D) shown in Table 3. In the truth table approach, test cases that provide MC/DC are
selected by identifying pairs of rows where only one condition and the decision

outcome change values between the two rows. In Table 3, the columns shaded in gray indicate the independence
pairs for each condition. For example, test case 2 coupled with test case 10 together demonstrate the independent
effect of A, because A is the only condition that has changed value along with the change in value of the outcome
Z. Although the truth table is a simple approach to showing the independent effect of a condition, the truth table
approach suffers from a number of limitations: (a) the truth table is unwieldy for large logical expressions; and, for
a logical expression with n inputs, only n+1 of the 2n rows are useful; (b) the truth table addresses only one logical
expression at a time; and, (c) the truth table does not connect the inputs and outputs from the requirements-
based tests with the source code structure.

Carnegie Mellon University

Software Engineering Institute Page 40 of 41

Carnegie Mellon University

Software Engineering Institute Page 1 0f 11

P~~~

Instructor Note: This should easily be understood by the students. There are a lot of
references for agile/XP. If the students are given a project to work on, it would be good for
them to try an Agile approach.

Carnegie Mellon University

Software Engineering Institute Page 3 of 11

| N R U R {5 S | RO S

S |

[RS R [N N S SO

Team Builds

Agile practices are an example of advances in development productivity.

Let’s discuss some changes:

* Development changes to continuous integration and delivery of business value.

» Continuous integration exists on even SB projects — integrate, build, and test as early

and often as feasible.

Carnegie Mellon University
Software Engineering Institute

Page 50f 11

R MUY LI INT MU YIS T AT L MV LM W L LMV LA MM ur

testing.

trends

I Type of build What tests? Level of automation

Quality organizations have changed their relationship with development. Quality used to
be in a separate room, walled off so to speak.

* Send us the product when you think it is completed and we will tell you if it’s good
enough.

Modern quality organizations work with development — on the same team.

» Testing strategy, infrastructure, products, staff need to begin early — day one and
evolve.

* Every “build” from development needs some form or quality review
* Cannot scale to this level without automation.

But, embedded systems require a blend of manual and automated testing — scripts plus
human intervention.

Carnegie Mellon University

Software Engineering Institute Page 6 of 11

VAT At I D llniimniim b el D

timeliness of your product.

“

cuctam at all timae

R~ Rkt

XP is Extreme Programming. There is a lot of reference material and many case studies on

this. There is even an XP conference.

Carnegie Mellon University
Software Engineering Institute

Page 8 0of 11

	Mod1_Intro-SW Lifecycle Models
	Mod2_SW Dev Lifecycles
	Mod4_ Process Frameworks
	Mod5_PSP and TSP
	Mod6_Arch-Cent Dev Mothod (ACDM)
	Mod7_RUP-AUP-OUP
	Mod8_Software Assurance Lifecycle and Maturity Models
	Mod9_OWASP CLASP Overview
	Mod10_What are requirements
	Mod12_Use Case Models
	Mod13_SecReq and SQUARE Overview
	Mod14_Artifacts to support cybersecurity req
	Mod15_SQUARE for Acquisition
	Mod16_Risk Analysis for Software Assurance - Part 1
	Mod17_Risk Analysis for Software Assurance - Part 2
	Mod18_Deisgn Patterns
	Mod19_UML
	Mod20_UML Statecharts
	Mod21_Inspections
	Mod22_System Testing
	Mod23_Specific Techniques
	Mod24_Continuous Integration-Testing

